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Abstract

We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of

high-dimensional realized covariance matrices of asset returns (up to 100 assets). The model per-

forms a spectral decomposition of the scale matrix of a central Wishart distribution and assumes

independent dynamics for the principal components' variances and the eigenvector processes.

A three-step estimation procedure makes the model applicable to high-dimensional covariance

matrices. We analyze the �nite sample properties of the estimation approach and provide an

empirical application to realized covariance matrices for 100 assets. The DPC-CAW model has

particularly good forecasting properties and outperforms its competitors for realized covariance

matrices.

JEL classi�cation: C32, C58, G17;

Keywords: Realized volatility, Covariance matrix, Spectral Decomposition, Time-Series Models.

1 Introduction

The modeling and forecasting of covariance matrices of asset returns is central to �nancial decision

making since it provides a measurement of the risk involved in di�erent investment allocations. It is
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speci�cally used in option pricing, risk management and portfolio allocation.

Traditionally multivariate GARCH (MGARCH) or multivariate stochastic volatility (MSV) mod-

els have been applied in order to estimate conditional covariance matrices from daily asset return

vectors (see e.g. Bauwens et al., 2006, and Asai et al., 2006, for surveys). Nowadays the increas-

ing availability of intraday asset return information enables the computation of consistent ex-post

measures of daily (co)variation of asset prices, so-called realized (co)variances (see e.g. Andersen et

al., 2003, and Barndor�-Nielsen and Shephard, 2004). These realized measures can then be modeled

directly in order to obtain forecasts of the covariance matrix of asset returns. The literature pro-

vides broad evidence that models for realized covariance matrices provide more precise forecasts then

MGARCH and MSV models (see e.g. Golosnoy et al., 2012, and the references therein). Pioneering

approaches are found in Gourieroux et al. (2009), Chiriac and Voev (2011), Bauer and Vorkink

(2011), Noureldin et al. (2012) and Golosnoy et al. (2012).

These models have in common that applications to high-dimensional covariance matrices (say,

for more than 10 assets) are complicated if not impossible and empirical applications typically do

not exceed the 10-dimensional case.1 Realistic portfolios however consist of a large number of assets

which makes high-dimensional covariance matrix forecasting an important �eld of research. The

development of models for high-dimensional applications is challenging, since the dimension of the

object of interest is proportional to the square of the number of assets. This results in a huge number

of model parameters and renders one-step maximum likelihood (ML) estimation virtually impossi-

ble (the so-called curse of dimensionality). An important task is therefore to develop multivariate

volatility models which allow for feasible estimation in high-dimensional applications.

One strategy which has been proposed to overcome the curse of dimensionality is the use of

sparsity assumptions like e.g. sparse factor structures for the assets' covariance matrix (see e.g.

Wang and Zou, 2010, Tao et al., 2011, Shen et al., 2018, Sheppard and Xu, 2019, Asai and McAleer,

2015, Jin et al., 2019). An alternative is to design multivariate volatility models such that their

parameters can be iteratively estimated by multistep procedures. In particular, Bauwens et al.

1In this paper we follow the convention of labeling covariance matrices of up to ten assets as �small dimensional�
and covariance matrices of up to 100 assets as �high-dimensional�. We are not concerned with �vast-dimensional� or
�large-dimensional� covariance matrices with more than 100 assets (compare e.g. Lunde et al., 2016, Sheppard and
Xu, 2019, and Engle et al, 2019, for similar conventions).
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(2012) proposed the Realized DCC (Re-DCC) CAW model (see also Bauwens et al., 2014, and

Bauwens et al., 2016, for applications and extensions), which resembles the DCC GARCH idea

of Engle (2002) under the Conditional Autoregressive Wishart (CAW) setting of Golosnoy et al.

(2012) for realized covariance matrices. The model is applicable in high-dimensional settings via

three-step estimation with correlation targeting, similar to the corresponding MGARCH model.

Bauwens et al. (2012) provide an empirical application for 50 assets. While the DCC idea builds

on decomposing the conditional covariance matrix in variances and correlations, which are then

estimated independently, an alternative strand of literature constructs orthogonal components via

a spectral decomposition (SD) of the covariance matrix. The most prominent model here is the

orthogonal GARCH (OGARCH) model of Alexander and Chibumba (1997) and Alexander (2001),

where the estimation output can be readily interpreted in terms of (conditional) principal component

analysis. Aielli and Caporin (2015) introduce additional �exibility via allowing for dynamic loading

matrices. The resulting model is then called Dynamic Principal Component (DPC) GARCH model.

Similar to the DCC approach, the framework assumes the presence of an auxiliary process generating

orthonormal dynamic eigenvectors and allows for three-step estimation in order to be applicable in

high-dimensional settings (the authors provide an application for up to 30 assets).

In this paper we adapt the DPC-GARCH model of Aielli and Caporin (2015) to the modeling of

high-dimensional realized covariance matrices. The model structure is based on the CAW framework

of Golosnoy et al. (2012) assuming a conditional central Wishart distribution for the realized co-

variance matrix. This particular distributional assumption allows for a convenient Quasi Maximum

Likelihood (QML) interpretation implying consistency of one-step estimation even if the Wishart

assumption is violated. We present a scalar version of the resulting DPC-CAW model and its esti-

mation via a three-step approach similar to Aielli and Caporin (2015) in order to enable parameter

estimation in high-dimensional settings. The three-step approach su�ers from similar inconsistency

problems as the DCC GARCH, the Re-DCC CAW and the DPC-GARCH model. We therefore

conduct an extensive simulation experiment which shows that biases are present but mainly a�ect

the unconditional variances of lower order principal components which are of minor relevance for

covariance forecasting. An out-of-sample forecasting experiment for 100-dimensional realized covari-
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ance matrices �nally shows that the DPC-CAW model has good forecasting properties in 1-period,

5-period and 10-period ahead forecasting and outperforms its competitors in particular in forecasting

the correlation structure and the weights of the Global Minimum Variance Portfolio (GMVP), which

are of high relevance in practical portfolio optimization. In particular, the DPC-CAW approach

features signi�cantly lower correlation and GMVP losses compared to up-to-date competitors like

the �exible Factor HEAVY approach of Sheppard and Xu (2019) and the Factor-CAW of Shen et al.

(2018).

The rest of the paper is organized as follows. In section 2 we brie�y review the concept of realized

covariance measures. Section 3 introduces the scalar DPC-CAW model including one-step and three-

step ML estimation. Section 4 presents the results of a simulation experiment analyzing the bias and

consistency of estimates obtained via the three-step approach. The empirical application to realized

covariance matrices for 100 NYSE traded stocks including in-sample diagnostics and an extensive

out-of-sample forecasting experiment is presented in Section 5. Section 6 concludes.

2 Realized Covariance Measures

Consider an n-dimensional vector of log-prices y(τ), where τ ∈ R+ represents continuous time.

Assume that y(τ) is a Brownian stochastic semimartingale with (n × n) spot covariance matrix

Θ(τ). Without loss of generality restricting the trading day to the unit interval we obtain the 'true'

integrated covariance matrix at day t as Σt =
∫ t
t−1 Θ(τ) dτ .

Now assume that we observe m+ 1 uniformly spaced intraday log-prices. Then the j'th intraday

return vector on day t (t = 1, . . . , T ) is given by

rj,t = y
(
(t− 1) + j/m

)
− y
(
(t− 1) + (j − 1)/m

)
, j = 1, . . . ,m, t = 1, . . . , T. (1)

Let the (n × n) matrix Rt denote a realized measure, i.e. a nonparametric ex-post estimate of Σt

exploiting high-frequency asset return information. A well-known example for Rt is the realized
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covariance matrix, which is de�ned as

RCt =

m∑
j=1

rj,tr
′
j,t. (2)

In the absence of market microstructure noise and discontinuous price jumps it can be shown that

RCt is a consistent estimator of Σt as m → ∞ (see Barndor�-Nielsen and Shephard, 2004). If the

observed intraday price data contains microstructure noise, jumps or non-synchronous trading one

can employ one of several alternatives to the realized covariance matrix, such as the multivariate

realized kernel of Barndor�-Nielsen et al. (2011).

3 The DPC-CAW Model

We model the time-evolution of n-dimensional stochastic positive-de�nite realized covariance mea-

sures {Rt}Tt=1. Given the �ltration Ft−1 = {Rt−1, Rt−2, . . . }, Rt is assumed to follow a central

Wishart distribution

Rt|Ft−1 ∼ Wn(ν, St/ν), (3)

where ν ≥ n is the scalar degrees of freedom, and St/ν denotes the symmetric, positive de�nite n×n

scale matrix, such that

E[Rt|Ft−1] = St. (4)

Furthermore let

St = LtDtL
′
t (5)

denote the SD of the conditional mean ofRt, where the diagonal elements ofDt = diag(d1,t, d2,t, . . . , dn,t)

are the eigenvalues of St and the columns of Lt are the associated orthonormal eigenvectors (see e.g.

Lütkepohl, 1996, p. 69). We are interested in building a forecasting model for Rt where both the

eigenvalues and the eigenvectors are allowed to vary persistently over time and which allows for

convenient sequential estimation in high-dimensional applications.
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3.1 Eigenvector Driving Process

In order to obtain time-varying orthonormal eigenvectors Lt in eq. (5), we introduce a matrix-variate

auxiliary process {Qt} from which the eigenvectors Lt are obtained via computing the conditional

SD of Qt. The auxiliary process is de�ned as a scalar BEKK-type recursion (see Engle and Kroner,

1995) for realized covariance measures:

Qt = (1− a− b)S + aRt−1 + bQt−1, (6)

Qt = LtGtL
′
t. (7)

The scalars a and b and the intercept matrix S are parameters to be estimated. Time-varying

orthonormal eigenvectors Lt are generated by the conditional SD of Qt in Eq. (7). The diagonal

matrix of eigenvalues Gt obtains as a 'residual', which is of no further interest.

We consider model (6)-(7) as the true data generating process (DGP) for the loading matrices.

Note that we may generalize the scalar dynamics of Eq. (6) to full BEKK dynamics (see Aielli and

Caporin, 2015, and Noureldin et al., 2014, for details). However, estimation of such a 'complete model'

in high-dimensional settings is practically impossible since the number of autoregressive parameters

is of order O(n2) (the curse of dimensionality). We therefore restrict the model to feasible scalar

dynamics similar to the popular DCC-GARCH approach.

The SD in Eq. (7) is not uniquely identi�ed. Following Aielli and Caporin (2015) we therefore

impose on all SDs within the model except Eq. (5) that the eigenvalues are arranged in strictly

decreasing order.

The sign of each eigenvector is still unidenti�ed. However within the model the eigenvector matrix

appears only in quadratic form. Hence there is no need for imposing a sign restriction. The implicit

assumption that the eigenvalues of Qt are distinct holds almost surely and is thus mild.

In order to ensure that Qt is always positive de�nite we furthermore impose that 0 ≤ a, 0 ≤

b, a+ b < 1 and S and Q0 are positive de�nite.

We require an additional constraint on S in order to ensure a unique sequence of eigenvectors.

To see this intuitively, multiply Eq. (6) by some positive constant c. Given the data {Rt}Tt=1 this

6



would produce the same eigenvector matrix series {Lt}Tt=1 since cQt = cLtGtL
′
t = LtcGtL

′
t = LtG̃tL

′
t.

Identi�cation can be ensured by restricting the magnitude of the intercept matrix S as detailed in

Section 3.2 below.

3.2 Eigenvalue Driving Process

The previous Section discussed the eigenvector generating process for the SD in Eq. (5). What

remains in order to de�ne the covariance matrix forecast (5) is a model for the dynamics of the eigen-

values in Dt. We employ n independent GARCH-type recursions in order to capture the dynamics

of the diagonal elements of Dt. Let

di,t = (1− αi − βi)γi + αi gi,t−1 + βi di,t−1, (8)

where gi,t = e′iL
′
tRtLtei with ei being an n×1 vector of zeros with a 1 at the i'th position. That is, gi,t

is the i'th diagonal element of the random matrix L′tRtLt. Generalizations of model (8) obtained by

increasing the lag order or e.g. including HAR-type dynamics (see Corsi, 2009) are straightforward

to implement.

Note that

E[L′tRtLt|Ft−1] = L′tE[Rt|Ft−1]Lt = L′tLtDtL
′
tLt = Dt, (9)

such that

E[gi,t|Ft−1] = E[e′iL
′
tRtLtei|Ft−1] = e′iE[L′tRtLt|Ft−1] ei = e′iDtei = di,t. (10)

Under the usual stationarity condition we then obtain

E[di,t] = γi. (11)

We now employ the SD of the intercept matrix S of the eigenvector generating auxiliary process Qt
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in Eq. (6), S = LDL′, where D = diag({di}ni=1), and set

γi = di, i = 1, . . . , n. (12)

That is {di}ni=1 are the eigenvalues of the intercept matrix in the eigenvector driving recursion (see

Eq. 6). In summary, we impose that γi = di, 0 ≤ αi, 0 ≤ βi, αi + βi < 1, 0 < di,0 ∀i. Since all

parameters are restricted to be positive this assumption also ensures that di,t is always positive and

consequently St is always positive de�nite.

The targeting-like constraint of setting γi = di solves the problem of identifying a unique Lt

sequence via the Qt auxiliary process since it implicitly imposes

tr(E[Rt]) = tr(S). (13)

Hence the magnitude of the intercept matrix S is restricted, which precludes the possibility of scaling

the {Qt} sequence by a constant c.

Proof.

tr(E[Rt]) = tr(E[E[Rt|Ft−1]]) = tr(E[St]) = E[tr(LtDtL
′
t)] = E[tr(DtL

′
tLt)]

= E[tr(Dt)] = tr(D) = tr(DL′L) = tr(LDL′) = tr(S),

(14)

where we used the trace property tr(ABC) = tr(CAB) = tr(BCA) and orthonormality of Lt and

L.

While this is not the only way to achieve identi�cation of the eigenvector sequence {Lt} it does

entail an appealing interpretation of the model. Speci�cally if a = b = 0, the eigenvector driving

process collapses to the constant matrix Qt = S, such that Lt = L. The resulting speci�cation

resembles the popular orthogonal GARCH model of Alexander and Chibumba (1997) and Alexander

(2001), such that the DPC-CAW is regarded as being a dynamic generalization of the OGARCH to

the modeling of realized covariance measures.

Recall that we assumed that the diagonal elements of D are arranged in decreasing order, in order
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to identify the model. This implies that

E[d1,t] > E[d2,t] > . . . > E[dn,t]. (15)

This however does not imply that individual elements of dt themselves are arranged in decreasing

order, since the random variables gi,t are not bounded above (recall that we did not need to impose

identifying restrictions on the eigenvalue ordering for the SD of the covariance matrix forecast St in

Eq. 5). A situation where di,t < di−1,t happens particularly often in high dimensional applications

where the elements of d are close to each other. Note that this is not a drawback but merely re�ects the

fact that the conditional ordering of the eigenvalues may deviate from their unconditional ordering.

As an example, unconditionally, the second principal component explains a lower fraction of the

total volatility than the �rst. But conditionally there may exist periods, where the �rst component

dominates the second. Such situations are well known in the context of factor analysis (see also

similar argumentations in Aielli and Caporin, 2015). In fact it is possible to restrict the ordering of

the conditional eigenvalues by e.g. modeling their positive increments. However, this would impose

unnecessary and overidentifying restrictions on the model.

The conditional Wishart assumption for Rt in Eq. (3) implies a conditional Gamma distribution

for gi,t.

gi,t|Ft−1 ∼Gamma(ν/2, 2di,t/ν). (16)

Proof. Consider the following theorem of Rao (1965):

Theorem 1. If an n × n random matrix Y has a central Wishart distribution with ν degrees of

freedom and scale matrix Ω, that is Y ∼Wn(ν,Ω), and X is a q × n matrix of rank q, then:

XYX ′ ∼Wq(ν,XΩX ′).

SetX = e′iL
′
t, where ei is de�ned as above, Ω = St/ν and Y = Rt to obtainXYX

′ = e′iL
′
tRtLtei = gi,t
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and XΩX ′ = e′iL
′
t
St
ν Ltei = 1

ν e
′
iL
′
tLtDtL

′
tLtei = 1

ν e
′
iDtei =

di,t
ν such that

gi,t|Ft−1 ∼W1

(
ν,
di,t
ν

)
. (17)

Since the univariate Wishart resembles the Gamma density, gi,t follows a conditional gamma distri-

bution with shape parameter ν/2 and scale parameter 2di,t/ν:

gi,t|Ft−1 ∼Gamma(ν/2, 2di,t/ν).

Equations (3) - (8) then constitute the scalar DPC-CAW model which is summarized by the

distributional assumption Rt|Ft−1 ∼ Wn(ν, St/ν) together with the following set of equations for

t = 1, . . . , T :

St = LtDtL
′
t

Qt = (1− a− b)S + aRt−1 + bQt−1

Qt = LtGtL
′
t

di,t = (1− αi − βi)γi + αi gi,t−1 + βi di,t−1, γi = di, i = 1, . . . , n

gi,t = e′iL
′
tRtLtei, i = 1, . . . , n

where S = LDL′, D = diag({di}ni=1). The parameters of the DPC CAW model are comprised in the

parameter vector θ with θ = (vech(S)′, a, b, {αi, βi}ni=1, ν)′ and 0 ≤ a, 0 ≤ b, a + b < 1 and S and

Q0 are positive de�nite, 0 ≤ αi, 0 ≤ βi, αi + βi < 1, 0 < di,0 ∀i. In our empirical application below

we initialize the eigenvector and eigenvalue recursions by Q0 = 1
T

∑T
t=1Rt and di,0 = 1

T

∑T
t=1 gi,t.
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3.3 Maximum Likelihood Estimation

3.3.1 One-Step Estimation

Low-dimensional settings (say, up to �ve assets) allow for one-step estimation of the model parameters

θ = (vech(S)′, a, b, {αi, βi}ni=1, ν)′ of the DPC-CAW model. Estimation can then be carried out by

maximizing the log-likelihood function

L(θ) =
T∑
t=1

[
nν

2
ln
(ν

2

)
− n(n− 1)

4
ln(π)−

n∑
i=1

ln Γ

(
ν + 1− i

2

)
+

(
ν − n− 1

2

)
ln |Rt|

−ν
2

[
ln |St(ψ)|+ tr

(
St(ψ)−1Rt

) ]]
, (18)

where ψ summarizes the parameters for the Qt and di,t recursions, such that θ = (ψ, ν)′. The

parameter ν can be treated as a nuisance parameter due to its irrelevance for the matrix forecast

(see Eq. 4). In fact the �rst order conditions for the maximization of the log-likelihood with respect

to ψ are proportional to ν. Then

ψ̂ = argmax
ψ

L∗(ψ), (19)

with

L∗(ψ) =
T∑
t=1

−1

2

[
ln |St(ψ)|+ tr

(
St(ψ)−1Rt

)]
. (20)

The score vector of observation t obtains as

st(ψ) =
1

2

{[
(vec(Rt))

′ − (vec(St))
′] (S−1t ⊗ S−1t ) ∂vec(St)∂ψ

}
. (21)

Assuming a correctly speci�ed mean E[Rt|Ft−1] = St, st(ψ) is a martingale di�erence sequence since

E[st(ψ)|Ft−1] = 0. (22)

Consequently, as noted by Bauwens et al. (2012) and Noureldin et al. (2012), under usual regularity

conditions (see e.g. Wooldridge, 1994) ψ̂ is consistent and asymptotically normal even if the Wishart

assumption is violated, provided that the conditional mean is correctly speci�ed. Hence Eq. (20)
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can be interpreted as a Quasi-Log-likelihood (QL). From the QL function in Eq. (20) we obtain the

period-t log-likelihood contribution

`∗t = −1

2

[
ln |St|+ tr

(
S−1t Rt

)]
= −1

2

[
ln
∣∣LtDtL

′
t

∣∣+ tr
(
(LtDtL

′
t)
−1Rt

)]
= −1

2

[
ln |Dt|+ tr

(
LtD

−1
t L′tRt

)]
= −1

2

[
n∑
i=1

ln (di,t) + tr
(
D−1t L′tRtLt

)]

= −1

2

n∑
i=1

[
ln (di,t) +

gi,t
di,t

]
. (23)

Standard errors can be obtained by the well known sandwich formula e.g. provided in Bollerslev and

Wooldridge (1992). However, initial investigation showed that the QL function is multi-modal, such

that standard local gradient based optimization algorithms fail if the realized covariance measure

comprises more than a few assets. As an alternative, gradient-free global optimization methods like

pattern search (direct search), genetic algorithms and simulated annealing can be employed (see e.g.

Kelley, 1999, for details). Moreover and even more importantly, the parameter vector ψ quickly

becomes large if the number of assets n increases, in particular since the parameter matrix S of

the Qt process in Eq. (6) comprises n(n + 1)/2 model parameters, e.g. 465 intercepts for, say,

n = 30 assets (the so-called curse of dimensionality). This causes additional problems in numerically

optimizing the likelihood and makes high-dimensional applications (say, for n > 10 assets) practically

impossible.

The following section therefore proposes a three-step estimation approach which solves the curse

of dimensionality via multi-step estimation and covariance targeting (see e.g. Bauwens et al., 2006)

where the intercept matrix S is replaced by an ex-ante estimate of the unconditional mean of the

covariance process, similar to the DCC framework of Engle (2002). The three-step approach can

therefore be applied in empirically realistic settings with n > 10 assets and also provides a convenient

solution to the numerical optimization problems arising for one-step estimation (see above).
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3.3.2 Three-Step Estimation

In high-dimensional scenarios the curse of dimensionality precludes one-step estimation of the n(n+

1)/2 + 2(n + 1) + 1 parameters of the DPC-CAW model via the corresponding Wishart likelihood.

Aielli and Caporin (2015) propose a three-step estimation technique called the DPC estimator, which

is easily adapted to the CAW framework. The procedure works as follows:

1. Estimate S = LDL′ via Ŝ = T−1
∑T

t=1Rt (covariance targeting);

2. Conditional on step 1. estimate (a, b)′ by �tting a scalar CAW model (see Golosnoy et al., 2012)

to the sequence of realized covariance measures, essentially (wrongly) assuming Rt|Ft−1 ∼

Wn(ν,Qt/ν), where Qt is given by Eq. (6) and S
!

= Ŝ. Recover {Q̂t}Tt=1 as the Qt-sequence

computed at the CAW parameter estimates in order to calculate {ĝi,t}Tt=1 for i = 1, . . . , n,

where ĝi,t = e′iL̂
′
tRtL̂tei with L̂t being the matrix of eigenvectors of Q̂t;

3. Conditional on 1. and 2. estimate {αi, βi}ni=1 via univariate QML based on Eqs. (8) and (16)

separately ∀i with gi,t replaced by ĝi,t from estimation step 2. The i'th log-likelihood is given

by

Li(αi, βi) =

T∑
t=1

[
(ν/2− 1) ln(ĝi,t)− ln(Γ(ν/2))− (ν/2) ln(2di,t/ν)− 0.5νĝi,t/di,t

]
. (24)

Analogous to the Wishart, Li(αi, βi) features a QML interpretation given the previously esti-

mated {ĝi,t}Tt=1.

Steps 1 and 2 estimate the parameters of the eigenvector driving Qt-process of the DPC-CAW

model by �tting a scalar CAW model to the sequence of realized covariance measures and employing

covariance targeting in order to alleviate the curse of dimensionality. Under the assumption that

the true data-generating process for the realized covariance measures Rt is a DPC-CAW, it is clear

from Eqs. (3) and (5) that the conditional mean of Rt is St = LtDtL
′
t and not Qt = LtGtL

′
t

(see Eq. 7). Hence the �rst two estimation steps, which essentially assume that the conditional

mean of Rt is Qt rather than St, introduce bias and inconsistency in estimation since ML estimators

of misspeci�ed mean models are inconsistent (see e.g. Bollerslev and Wooldridge, 1992). However,

13



since standard CAWmodels (which in the given context can be interpreted as misspeci�ed conditional

volatility models for data generated by the DPC-CAW) typically provide good approximations to

the stochastic behavior of realized covariance matrices Rt (compare e.g. the results of Golosnoy

et al., 2012), we can argue that the eigenvectors of Qt-sequences obtained as estimated conditional

means from CAW recursions are expected to be rather close to the eigenvectors of St, namely Lt.

This result is illustrated in Figure 1, which shows consistent estimates of the individual Qt elements

obtained via one-step QML estimation of the DPC-CAWmodel to a 3-dimensional realized covariance

subset of the data discussed in Section 4. The Qt-dynamics closely follow the pattern of the realized

(co)variance data, which is e�ectively approximated by the CAW in estimation steps 1 and 2.

Recall that steps 1 and 2 result in biased and inconsistent estimates of the parameters a, b and S

since the scalar CAW likelihood in step 2 is not correctly speci�ed (the matrix Qt under the DPC-

CAW is not the conditional mean of Rt, as discussed above). Subsequently, conditional on Steps 1

and 2 the parameters of the eigenvalue driving processes are estimated. This last estimation step

does not add to the inconsistency due to the QML interpretation of the according likelihoods given

in Eq. (24). Notice that the intercept parameters γi were �xed in step 1, such that step 3 essentially

corresponds to univariate GARCH estimation with variance targeting.

The quasi-likelihood functions in steps 2 and 3 are smooth, hence standard gradient based opti-

mization procedures can be applied. However, estimation of standard errors becomes complicated

due to the aforementioned misspeci�cation. In fact we may obtain asymptotic standard errors under

the assumption of consistency by applying the GMM-framework of Engle (2009) for the three-step

approach (for details see also Aielli and Caporin, 2015). However these standard errors are not valid

if the model is inconsistently estimated since the moment conditions (the likelihood scores) are not

valid in this case. In fact, our simulation experiments in Section 4 show signs of inconsistency. How-

ever note that standard errors are of minor importance for forecasting applications, which are in the

focus of the present paper.

The three-step approach is simple and intuitive but comes with the disadvantage of introduc-

ing bias and inconsistency in parameter estimation. This inconsistency is unavoidable in high-

dimensional applications of the DPC approach and has already been encountered by Aielli and
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Caporin (2015) in the corresponding GARCH framework. Section 4 analyzes the properties of ob-

tained estimates in an extensive simulation experiment. The results suggest that bias is present

but acceptably small or of reduced impact, especially given the huge dimension of the estimation

problem. The forecasting application of Section 5 furthermore shows that these issues do not nega-

tively a�ect the out-of-sample performance, which is typically in the focus of empirical applications

of multivariate volatility models.

The three-step estimator enables quick estimation in high-dimensional settings. The according

CAW likelihoods are well-behaved as already found by Golosnoy et al. (2012), resulting in fast

convergence of Quasi-Newton based numerical optimizers. Three-step estimation of a 100-dimensional

DPC-CAW model with T = 2500 takes at most 100 seconds using an Intel Core i7 2.60 GHz processor

under Matlab 2018b. However, the estimation of the DPC-CAW model in large/vast-dimensional

settings (�100 assets) quickly becomes challenging mainly due to the inversion of the conditional mean

St in each single likelihood evaluation of estimation step 2. This shortcoming is well known in the

literature on multivariate volatility modeling (see e.g. Hafner and Reznikova, 2012). One possibility

to overcome this problem is to apply composite likelihood techniques, as e.g. illustrated by Pakel

et al (2018) and Engle et al. (2019) under the DCC GARCH framework. Here the composite log-

likelihood is computed by summing up the log-likelihoods of pairs of assets. This greatly reduces the

dimension of the estimation problem and enables inference for vast-dimensional covariance matrices.

We however note that - in contrast to GARCH-type models - the DPC-CAW model is based on

observed realized covariance matrices, which have been computed from synchronized intraday asset

return observations. The computation of vast-dimensional realized covariance matrices is challenging,

involves sparsity assumptions like factor structures, trimming or eigenvalue cleaning procedures (see

e.g. Tao et al., 2011, and Lunde et al., 2016), which impose ex-ante structures on the realized

measures. As an alternative way of dealing with vast-dimensional applications of the DPC-CAW

model this rather suggests to impose a factor structure on the intraday asset returns and apply the

DPC-CAW framework to the factor covariance matrix, which is typically of low dimension (e.g. 5 to

10-dimensional). See e.g. Asai and McAleer (2015) and Shen et al. (2018) for similar applications of

CAW models to vast-dimensional frameworks. We leave the application of factor structures in the
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DPC-CAW framework for future research.

4 Simulation Experiment

We conduct an extensive simulation experiment in order to assess the �nite sample properties of the

DPC estimator. Since we focus on high-dimensional applications the cross-sectional size is set to

n = 100.

The following parameter set up is used: The intercept matrix S = LDL′ of the Qt process is set

equal to the average realized covariance matrix of the data employed in the empirical application

of Section 5.1. We consider 9 distinct eigenvector recursion parameter set-ups, where the ARCH

parameter a is set equal to 0.025, 0.035, 0.05 or 0.1 and the GARCH parameter is chosen such that

the persistence (a + b) equals 0.9, 0.95, 0.99, or 0.997. Note that the setting (a, b) = (0.035, 0.997)

corresponds to our empirical results from Table 6.

In order to achieve some variability in the eigenvalue recursion parameters they are drawn from

uniform distributions according to

αi ∼ U(0.22, 0.3), βi|αi ∼ U(0.94− αi, 0.99− αi). (25)

Consequently the persistence parameters (αi+βi) ∈ [0.94, 0.99]. The degrees of freedom parameter ν

is set to ν = 100. This parameter set up is inspired by parameter estimates obtained in the empirical

application of Section 5.1. The whole experiment covers 500 independent simulations for each of the

four time series lengths T = 1000, T = 2500, T = 5000, T = 10000 and each of the 4 × 4 = 16

parameter constellations.

All estimation results in this section and the upcoming empirical application in Section 5 are

obtained under the 3-step DPC estimator. The CAW- and Gamma likelihoods are maximized via

Quasi-Newton methods with BFGS-updating of the Hessian under Matlab 2018b. The eigenvector

and eigenvalue recursions are initialized by Q0 = 1
T

∑T
t=1Rt and di,0 = 1

T

∑T
t=1 gi,t for i = 1, . . . , n.

As starting values for the numerical optimization we choose (0.05, 0.9) for (a, b) and (αi, βi). The
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numerical optimization however appeared robust to the choice of the starting values.2

Estimation Step 1 Note that the symmetric 100×100 parameter matrix S comprises 5050 distinct

model parameters. For this reason we focus on the analysis of the 100 eigenvalues di, i.e. the diagonal

elements of D, which are of particular importance since they determine the level of the eigenvalue

recursions in estimation step 3. Moreover, the di estimates can be interpreted as the unconditional

variances of the asset returns' principal components, with decreasing fraction of explained asset return

variation for decreasing i. Figure 2 shows the average relative (percentage) estimation errors for the di

estimates, 1
500

∑500
j=1 100·( ˆdi,j−di,j)/di,j , over the 500 simulated data sets for the 16 parameter setups

and four sample sizes outlined above. Note that the setting (a = 0.035, a + b = 0.997) corresponds

to our empirical �ndings of Section 5. The true parameter values for the di's are reported in Table 1

and show a sharply decreasing pattern with 50% (90%) of the total asset return variation explained

by the �rst 7 (60) di's. For the ten highest, and therefore most important eigenvalues the biases

are ranging between -35% and 2% with rather low values between -2% and +2% for settings with

low a and low eigenvalue persistence. For the setting which comes closest to our empirical results,

(a = 0.035, a + b = 0.997), the biases of the �rst 10 eigenvalues range from -0.5 to -10%. For

persistencies of 0.99 or higher accompanied with comparatively large values for the a parameter we

obtain biases of up to 220%. This trend is particularly obvious for the high ARCH, high persistence

parameter set (a = 0.1, (a + b) = 0.997) which, however, does not appear to be relevant in practice

(see the empirical results of Section 5). Also note that these values correspond to di's of very low level

(compare Figure 2) whose contribution to the overall asset return volatility is very low. A signi�cant

impact of these relative biases on the forecasting performance of the DPC-CAW model is therefore

not to be expected (see also our further discussion below on the additional results in Figures 6 and

7).

Estimation Step 2 Figure 3 reports Violin Plots of relative estimation errors for the ARCH

parameter a. The biases range from -9.2% to 12.2% and are positive for a = 0.025, close to zero for

a = 0.035 and negative for high ARCH environments with a > 0.035. While the biases appear mostly

2The Matlab estimation �les for the DPC-CAW model are available under
https://github.com/mstollenwerk/dpc_caw.
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stable for increasing sample sizes, we observe a decrease in the biases for the (a = 0.035, a+b = 0.997)

setting but also an increasing relative bias pattern for high persistence / high ARCH settings. The

smallest biases are obtained for the (a = 0.035, a + b = 0.997) setting, which corresponds to our

empirical results of Section 5. The largest biases are obtained for the low persistence / low ARCH

setting (a = 0.025, a+ b = 0.9) and amount to 12% on average.

Figure 4 depicts the distribution of relative estimation errors for b. The biases appear small,

ranging from -0.61% to 5.1%, and decrease with increasing persistence a + b. For lower values of

the GARCH parameter b the biases tend to increase for high-persistence scenarios. For increasing

sample sizes the biases are partly diverging, but come close to zero for our empirical estimates

(b = 0.962, a+ b = 0.997).

Estimation Step 3 Figure 5 shows relative biases for the eigenvalue persistencies αi + βi for

i = 1, . . . , 100, which appear overall low with values ranging from -3% to 6%. For the individual αi

and βi we �nd negative and compensating positive biases between -60% and 10% (α) and -10% and

30% (β) (not reported here).

In order to investigate the e�ect of the biases on the estimated asset return (co)variances we

compute for each of the simulated data-sets the sequence of estimated covariance forecasts Ŝt(θ̂) for

t = 1, . . . , T as a function of the parameter estimates θ̂ discussed above, and compare these estimates

to the true simulated forecasts St(θ). Figure 6 reports Violin Plots of the average Euclidean norms

(1/T )
∑

t vech(Ŝt(θ̂)−St(θ))′vech(Ŝt(θ̂)−St(θ)) over the 500 simulations, and Figure 7 shows Violin

Plots of the corresponding relative (percentage) biases computed as (1/T )
∑

t(100/5050)
∑

i>j(Ŝij(θ̂)−

Sij(θ))/Sij(θ). The results show a pattern of decreasing Euclidean norms for increasing sample sizes,

coming close to zero for T = 10000 and all considered parameter settings. The distribution of relative

biases shows low dispersion around zero and the variation appears to be decreasing with increasing

sample size.

Summarizing the results, the simulation experiment indicates relatively low biases for the eigen-

value persistencies and the ARCH- and GARCH parameters of the eigenvector recursions while the
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biases of the di-estimates in estimation step 1 amount to up to 220% for eigenvalues of very low

level. However, these biases do not signi�cantly a�ect the covariance forecasts as indicated by the

Euclidean norms and biases for St reported in Figures 6 and 7. Hence the biases are not expected to

signi�cantly a�ect the forecasting performance of the DPC-CAW model.

5 Empirical Application

5.1 Data

We apply the scalar DPC-CAWmodel introduced in Section 3 in order to capture the dynamics of 100-

dimensional realized covariance measures. The data have been computed from one-minute intraday

asset returns by the microstructure-noise and jump robust multivariate realized kernel method of

Barndor�-Nielsen at al. (2011). The corresponding ticker symbols are shown in Table 2. Note that

the choice of the particular type of realized measure is not an important issue since the model can

be �tted to any series of positive-de�nite realized covariance measures. The sample period starts at

January 1, 2002, and ends on December 31, 2014, covering 3271 trading days.

Figure 8 depicts exemplary time-series plots of variance and covariance series and according sample

autocorrelation functions for 4 stocks included in the data set. Descriptive statistics are provided in

Table 3. The (co)variance processes are highly persistent, skewed to the right, leptokurtic and tend

to move parallel to each other.

5.2 In-Sample Estimation Results

We start with analyzing the in-sample �t of the DPC-CAW model for various model-order settings

using the BIC information criterion. According to Geweke and Meese (1981) it can be shown that for

linear ARMA type models the BIC is consistent in the sense that asymptotically the correct model

order is chosen. This however does not hold for nonlinear models such as the CAW of Golosnoy et

al (2012) or equivalently the DPC-CAW - even if consistently estimated. Golosnoy et al. (2012)

remark that there do not seem to exist published results on the consistency of the BIC for nonlinear

time-series models, which would justify its use under the CAW framework. Nevertheless the BIC is
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often applied as an 'indicator', although not asymptotically valid in a strict sense. Here we follow

Golosnoy et al. (2012) and align the BIC-based model selection by model diagnostics based on

Ljung-Box residual autocorrelation tests for the �tted models.

All models are estimated by the 3-step approach. We consider both, order selection for the

eigenvector- and for the eigenvalue processes given in Eqs. (6) and (8), jointly. For the eigenvalues

we restrict the chosen order to be identical across the 100 assets. Table 4 shows the results on the

BIC information criteria. We �nd a clear indication for the (1,1) speci�cation of the eigenvector

recursion, which corresponds to the typically chosen DCC-GARCH speci�cation for correlations.

The distribution of BIC values over the various eigenvalue order-constellations is much more even

and overall results in the preferred (3,4) model. For comparison we also report the BIC obtained for

a standard HAR speci�cation of the eigenvalue dynamics (see Corsi, 2009). The model boils down

to a restricted autoregressive speci�cation of order 20. The HAR model, although very popular in

empirical applications, is not preferred in any case.

Table 5 shows corresponding model diagnostic results on the in-sample �t to the autocorrelation

structure of the underlying realized (co)variance data. The model diagnostics are based on Ljung-

Box autocorrelation tests on the standardized Martingale di�erences (�Pearson residuals�) in the

n = 5050-dimensional vector

e∗t =
(
Cov[vech(Rt)|Ft−1]

)−1/2
vech

(
Rt − E[Rt|Ft−1]

)
=

[1

ν
Ln
(
In2 +Knn

)(
St ⊗ St

)
L′n

]−1/2
vech

(
Rt − St

)
,

where Knn denotes the commutation matrix (see e.g. Lütkepohl, 2005) and Ln denotes the elimi-

nation matrix de�ned by vech(X) = Lnvec(X). Under the null of correct model speci�cation these

residuals should be serially uncorrelated. The table reports averaged values of the Ljung-Box test

statistics at 200 lags computed over the 100 × 101/2 = 5050 time series of Pearson-residuals in the

vector e∗t . The 5% critical value of the Ljung-Box test statistic at 200 lags is χ2
200 = 233.99. The

results give an impression of the overall �t of the various model constellations to the (co)variance dy-

namics of the data, since the average Ljung-Box test statistics represent an aggregate of the squared
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residual autocorrelations for all variance and covariance series. The minimum average Ljung-Box

test statistic is obtained for a (1,2) speci�cation for the eigenvector dynamics combined with a (4,4)

lag-order for the eigenvalue processes as the best-�tting model for the in-sample (co)variance dynam-

ics. Compared to the BIC results, the residual diagnostics show a tendency for higher lag orders,

which is explained by the absence of a penalty term for the number of model parameters. Similar to

the BIC results, the HAR speci�cation is not preferred in any case. Moreover, the minimum average

Ljung-Box test statistic of 215.76 is very close to the one obtained for the BIC-preferred (1,1)-(3,4)

speci�cation (216.20). Hence the BIC - although not consistent - appears to be a reasonable advice

for selecting the lag-order of the DPC-CAW.

Table 6 reports a summary of the obtained estimates for the BIC-preferred (3,4)-(1,1) DPC-CAW

speci�cation. The estimated persistence for the eigenvector- and eigenvalue recursions is very high

with (a+ b) = 0.997 and a median of
∑p

`=1 αi,`+
∑q

`=1 βi,` of 0.978. This corresponds to the �ndings

in Aielli and Caporin (2015) and resembles analogous results for scalar DCC-GARCH applications

with intercept targeting.

The right panel of Figure 8 shows sample autocorrelation functions of standardized Pearson resid-

uals from the DPC-CAW(3,4)-(1,1) model for exemplary variance and covariance series of four stocks

included in the 100-dimensional data set. The results presented in the Figure are representative for

the complete set of stocks. The ACFs are depicted together with 95% Bartlett con�dence bands for

the variance and covariance series separately and illustrate the overall good �t of the DPC-CAW

approach. The model successfully reduces the serial dependence to a minimum. We however observe

some remaining predictability in the residual series: 441 of the 5050 series do not pass the Ljung-Box

test for zero autocorrelation at the 1% level and 100 lags. The literature reports much worse fractions

for applications of much lower dimension (see e.g. the model diagnostic results for the �exible CAW

speci�cations in Golosnoy et al., 2012, for a 5-dimensional application). The diagnostics therefore

imply a good �t to the complex dynamics of 5050 distinct variance and covariance series. Also note

that we may interpret some remaining residual predictability as a result of the sparse scalar model

structure of the DPC-CAW which enables applications to high-dimensional covariance matrices, while

avoiding over�tting and spuriously uncorrelated residuals. The residual ACFs in Figure 8 show that
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remaining predictability is typically found in variance residuals. This may be related to the direct

modeling of principal component variances rather than return variances.

5.3 Out-of-Sample Forecasting

We now compare the out-of-sample 1-period, 5-period and 10-period ahead forecasting performance

of the DPC-CAW speci�cation to alternative forecasting models proposed in the literature on realized

covariance modeling. We consider two out-of-sample windows: The �rst window starts at January

1, 2009, and ends on December 31, 2011, covering the subprime crisis period. The window exhibits a

particularly high volatility level and pronounced volatility peaks. The second window covers a period

of low to moderate volatility from January 1, 2012, until December 31, 2014, representing normal

stock market �uctuations (see the left panel in Figure 8 for exemplary time series plots). The models

are re-estimated daily using a rolling window of the previous 1750 covariance measures, i.e. roughly

7 years of data. New forecasts are generated based on the updated parameter estimates.

5.3.1 Competing Models and Forecast Evaluation

The scalar Re-DCC model of Bauwens et al. (2012) represents the 'natural' competitor for the DPC-

CAW approach. The Re-DCC model decouples correlations and variances which facilitates three-step

estimation similar to the DPC estimator (see Bauwens et al., 2012, for details). The model assumes

a conditional central Wishart distribution for the realized covariance measure and decomposes the

scale matrix St into

St = VtρtVt, (26)

where Vt = diag(
√
s11,t,

√
s22,t, . . . ,

√
snn,t) and ρt is the correlation matrix implied by St. We consider

GARCH(p, q) recursions for the conditional variances:

sii,t = γi +

p∑
k=1

αk,irii,t−k +

q∑
l=1

βk,isii,t−l. (27)
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The correlation matrix ρt is parameterized as follows:

ρt = (1− a− b)ρ̄+ aPt−1 + bρt−1, (28)

where Pt is the realized correlation matrix

Pt = {diag(Rt)}−1/2Rt{diag(Rt)}−1/2. (29)

ρ̄ is estimated by the sample mean of realized correlation measures (�correlation targeting�).

We also consider a constant conditional correlation CAW (CCC-CAW) model since it represents

a restricted Re-DCC speci�cation where a = b = 0. In a similar fashion we restrict the DPC-

CAW model to a = b = 0 in order to obtain the CAW-analogue to the OGARCH model (O-CAW).

Additionally we consider the DPC − CAW0f model which is obtained by restricting the eigenvalue

dynamics of the DPC-CAW model to αi = α and βi = β ∀i = 1, . . . , n. This particular model

restriction turned out to be favorable in forecasting applications.

We furthermore analyze an exponentially weighted moving average (EWMA) speci�cation, called

RiskMetrics (see J.P. Morgan, 1996), which boils down to exponential smoothing of realized covari-

ance matrices using a preset smoothing parameter λ. The forecast of the realized covariance matrix

is then given by

E[Rt|Ft−1] = (1− λ)Rt−1 + λE[Rt−1|Ft−2], (30)

where λ is set to its typical value for daily data, i.e. λ = 0.94.

As further forecasting models we apply the Factor HEAVY approach of Sheppard and Xu (2019),

where we use realized variances of the S&P 500 for the market factor (see Section 1.1 and in particular

Eq. 12 in Sheppard and Xu, 2019, for details on the model setup), and the PCA based CAW factor

approach of Shen et al. (2018) (labeled Factor-CAW ), with seven factors selected by the eigenvalue

criterion as discussed by Shen et al. (2018). While the Factor HEAVY model allows for dynamic

loadings and idiosyncratic variances, the Factor-CAW uses the PCA results of Tao et al. (2011), who

restrict the loadings and the idiosyncratic covariance matrix to be constant over time. Shen et al.
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(2018) �rst compute the realized factor covariance matrix using PCA techniques and then employ

diagonal CAW(p, q) processes in order to forecast the factor covariances.

Multi-step ahead forecasts are obtained by iterating the model recursions and replacing unknown

future dependent variables by their forecasts (see the according papers for details). The �rst two

columns of Table 7 provide an overview of all considered model speci�cations. The (p, q) column

describes the number of GARCH lags in the conditional variance speci�cations (Re-DCC and CCC-

CAW) or in the eigenvalue recursions (DPC-CAW and O-CAW), respectively. For the Factor HEAVY

model the order refers to the factor-, beta- and idiosyncratic variance dynamics and for the Factor-

CAW approach to the CAW(p, q) process for the factor covariance dynamics.

We now turn to the evaluation of the forecasting performance. Let L(X̂,X) denote the Euclidean

distance of the half-vectorization of the forecast error matrix given by

L(X̂,X) = vech(X̂ −X)′ vech(X̂ −X), (31)

where X̂ represents a particular matrix forecast and X the according realization. We apply �ve

di�erent loss functions in order to evaluate the forecasting performance of the considered models:

(i) MSE of predicted covariance matrix: L(R̂t, Rt);

(ii) MSE of predicted variances:
(
diag(R̂t −Rt)

)′ (
diag(R̂t −Rt)

)
;

(iii) MSE of predicted correlation matrix: L(ρ̂t, ρt);

(iv) Variance of predicted global minimum variance portfolio (GMVP): VGMPV,t;

(v) QLIKE: QLIKEt = ln |R̂t|+ vec
(
R̂−1t Rt

)′
ι.

The model-speci�c forecast of the covariance matrix Rt is given by R̂t = E[Rt|Ft−1] and accordingly

ρ̂t = {diag(R̂t)}−1/2R̂t{diag(R̂t)}−1/2. We use the realized kernel estimate Rt as unbiased proxy for

the true covariance matrix at period t.

Loss function (i) considers whole covariance matrix forecasts, while (ii) and (iii) focus on variances

and correlations instead. These quantities are of particular interest since DCC frameworks model
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variance and correlation dynamics separately. Loss function (iv) considers economic losses via com-

puting the forecast of the variance of the GMVP given by VGMPV,t = ŵ′Rtŵ, with ŵ = R̂tι/(ι
′R̂−1t ι),

where ι is an n-dimensional vector of ones. See e.g Patton (2011) for a discussion of the properties

of the QLIKE loss function (v), which is known to be robust to noisy volatility proxies.

We compute sample averages of the obtained losses over the respective forecasting windows and

asses the signi�cance of di�erences in losses via the model con�dence set (MCS) approach of Hansen

et al. (2011). At a given con�dence level (1 − α) the MCS contains the single model or the set

of models with the best forecasting performance. We select α = 0.1 as suggested by Hansen et al.

(2011) and compute the con�dence sets using the stationary bootstrap method with window lengths

determined by the maximum number of signi�cant parameters obtained by �tting an AR(p) process

on the loss di�erences and 5, 000 bootstrap replications.

5.3.2 Forecasting Results

The 1-period ahead forecasting results are summarized in Tables 7 and 8, the 5-period ahead results

in Tables 9 and 10 and the 10-period ahead results in Tables 11 and 12.

The DPC-CAW approach (DPC-CAW and DPC-CAW0f ) provides an overall good forecasting

performance over all considered subperiods and forecasting horizons. Moreover, the DPC model

provides the overall best forecasts w.r.t the correlation- and the economically important GMVP loss

functions (with the exception of 10-period ahead predictions in the calm period). In particular, the

DPC-CAW approach features signi�cantly lower correlation and GMVP losses compared to up-to-

date competitors like the �exible Factor HEAVY approach of Sheppard and Xu (2019) and the Factor-

CAW of Shen et al. (2018) across all subperiods and horizons. The DPC-CAW approach with HAR

dynamics for the eigenvalue recursions also appears to be particularly strong in forecasting the whole

covariance matrix, as indicated by the respective MSE results. For the variance loss however, the

DPC models are signi�cantly outperformed by the EWMA approach in calm periods and forecasting

horizons of �ve and ten trading days ahead. In turbulent periods the MCS for the variance- and

covariance matrix losses are very wide due to a huge dispersion of the Euclidean distances in (31),

such that di�erences in MSE losses across models are not signi�cant in most cases. We also note that
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EWMA appears to be a serious competitor in multi-period forecasting during calm market phases,

while the Factor-HEAVY approach is typically preferred under the QLIKE and turbulent market

conditions. The Factor-CAW in contrast does not appear to be a serious competitor in any case,

which may be explained by the model's strong restrictions on the covariance dynamics via imposing

time-constant idiosyncratic variances and factor loadings. The Re-DCC-CAW, O-CAW and CCC-

CAW models do not show an overall remarkable performance and are typically outperformed by their

competitors.

Taken all together, the results con�rm the presumption that the independent modeling of prin-

cipal component variances with time-varying eigenvectors o�ers a precise description of covariance

and correlation dynamics. In particular the GMVP forecasting results highlight the importance of

capturing correlation dynamics in the portfolio context. We conclude that the DPC-CAW approach

has particularly good forecasting properties and notably outperforms its competitors especially in

covariance-, correlation- and GMVP forecasting.

6 Conclusion

In this paper we propose a Dynamic Principal Component (DPC) CAW model for time-series of

high-dimensional realized covariance measures of asset returns. The model performs a spectral de-

composition of the scale matrix of a central Wishart distribution and assumes independent dynamics

for the principal components' variances and the eigenvector processes. A three-step estimation proce-

dure similar to the DCC framework for asset returns makes the model applicable to high-dimensional

covariance matrices.

We analyze the �nite sample properties of the three-step estimation approach in an extensive

simulation experiment and provide an empirical application to realized covariance measures for 100

assets traded at the NYSE. The DPC-CAW model has particularly good forecasting properties and

outperforms its competitors including DCC-CAW-, Factor HEAVY- and Factor-CAW speci�cations

for realized covariance measures.
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125.16 16.39 10.98 9.26 7.99 6.47 6.42 5.57 5.31 5.31
5.22 4.84 4.80 3.97 3.83 3.79 3.69 3.43 3.35 3.22
3.10 3.00 2.95 2.83 2.74 2.71 2.66 2.61 2.55 2.48
2.37 2.28 2.27 2.19 2.17 2.13 2.11 2.07 2.01 1.94
1.93 1.87 1.85 1.82 1.79 1.77 1.72 1.69 1.64 1.62
1.59 1.57 1.54 1.49 1.47 1.47 1.42 1.41 1.37 1.34
1.32 1.29 1.29 1.28 1.25 1.25 1.24 1.23 1.23 1.20
1.19 1.18 1.12 1.12 1.06 1.05 1.05 1.03 1.02 1.00
0.99 0.98 0.97 0.93 0.91 0.88 0.85 0.83 0.83 0.82
0.81 0.81 0.79 0.72 0.68 0.65 0.54 0.51 0.47 0.45

Table 1: Sorted eigenvalues obtained from Ŝ = T−1
∑T

t=1Rt for the data-set described in Section 5.
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Symbol Company Symbol Company

a Agilent Technologies Inc. gild Gilead Sciences Inc.
aa Alcoa Inc. glw Corning Incorporated
aapl Apple Inc. gps Gap, Inc.
abt Abbott Laboratories gs Goldman Sachs Group, Inc.
abx Barrick Gold Corporation hal Halliburton Company
adbe Adobe Systems Incorporated hd Home Depot, Inc.
adi Analog Devices Inc. hig Hartford Financial Services Group, Inc.
adp Automatic Data Processing hon Honeywell International Inc.
aig American International Group Inc. hpq Hewlett-Packard Company
all Allstate Corporation ibm International Business Machines Corporation
altr Altera Corporation intc Intel Corporation
amat Applied Materials Inc. intu Intuit Inc.
amd Advanced Micro Devices Inc. ip Internation Paper Company
amgn Amgen Inc. jcp J.C. Penney Company, Inc. Holding Company
amzn Amazon.com, Inc. jnj Johnson & Johnson
apc Anadarko Petroleum Corporation jnpr Juniper Networks, Inc.
axp American Express Company jpm J P Morgan Chase & Co
ba Boeing Company klac KLA-Tencor Corporation
bac Bank of America Corporation ko Cocoa-Cola Company
bax Baxter International Inc. kr Kroger Company
bbby Bed Bath & Beyond Inc. kss Kohl's Corporation
bby Best Buy Co., Inc. lb La Barge Inc.
bhi Baker Hughes Incorporated lltc Linear Technology Corporation
bmy Bristol-Myers Squibb Company lly Eli Lilly and Company
brcm Broadcom Corporation lmt Lockheed Martin Corporation
c Citigroup Inc. low Lowe's Companies, Inc.
cag ConAgra, Inc. luv Southwest Airlines Company
cah Cardinal Health Inc. mas Masco Corporation
cat Caterpillar, Inc. mcd McDonald's Corporation
cbs CBS Corporation new mdt Medtronic Inc.
cien Ciena Corporation met MetLife, Inc.
cl Colgate-Palmolive Company mmc Marsh & McLennan Companies, Inc.
cop ConocoPhillips mmm 3M Company
cost Costco Wholesale Corporation new mo Altria Group
csco Cisco Systems, Inc. mrk Merck & Company, Inc. New
ctxs Citrix Systems, Inc. ms Morgan Stanley Dean Witter & Co
cvs CVS Caremark Corp. msft Microsoft Corporation
cvx Chevron Corporation new msi Motorola Solutions, Inc.
dd E.I. du Pont de Nemours and Company mu Micron Technology, Inc.
de Deere & Company nem Newmont Mining Corporation
dis Walt Disney Company nke Nike, Inc.
dow Dow Chemical Company ntap NetApp, Inc.
duk Duke Energy Corporation new nvda NVIDIA Corporation
ea Electronic Arts Inc. orcl Oracle Corporation
ebay Ebay Inc. oxy Occidental Petroleum Corporation
emc EMC Corporation MA payx Paychex, Inc.
emr Emerson Electric Company pep Pepsico, Inc.
f Ford Motor Company DEL pfe P�zer, Inc.
�tb Fifth Third Bancorp pg Procter & Gamble Company
ge General Electric Company qcom QUALCOMM Incorporated

Table 2: Data set of 100 stocks selected by liquidity from the S&P 500.
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Mean Min. Max. Range Std. dev. Skewness Kurtosis

Realized variances (100 time series)

Min. 1.01 0.02 48.39 48.35 1.89 3.75 24.30
Median 3.29 0.10 117.00 116.88 5.04 8.90 146.03
Max. 12.51 0.35 7727.54 7727.50 151.31 43.58 2126.80

Realized covariances (4950 time series)

Min. 0.20 −126.77 14.07 14.97 0.87 −1.09 33.86
Median 1.05 −3.32 63.42 68.12 2.61 10.08 169.49
Max. 3.90 −0.02 1262.30 1282.60 25.51 38.93 1851.31

Table 3: Descriptive statistics for the 5050 realized variance and covariance time series of the 100-dimensional
data-set described in Section 5.
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Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) -2.5515 -2.7671 -2.0818 -2.4645 -2.0505 -2.0298 -2.0460 -2.0998
(1,1) -2.6289 -2.8342 -2.1779 -2.5363 -2.1531 -2.1402 -2.1502 -2.1892
(2,1) -2.6287 -2.8340 -2.1778 -2.5361 -2.1531 -2.1404 -2.1503 -2.1890

O
rd
er

o
f
ei
ge
n
va
lu
e
p
ro
ce
ss (1,2) -2.6304 -2.8361 -2.1793 -2.5377 -2.1546 -2.1418 -2.1517 -2.1905

(2,2) -2.6303 -2.8360 -2.1793 -2.5376 -2.1546 -2.1420 -2.1518 -2.1904
(3,2) -2.6301 -2.8358 -2.1791 -2.5374 -2.1544 -2.1418 -2.1516 -2.1902
(2,3) -2.6311 -2.8371 -2.1801 -2.5384 -2.1553 -2.1428 -2.1525 -2.1911
(3,3) -2.6309 -2.8370 -2.1799 -2.5382 -2.1552 -2.1426 -2.1524 -2.1909
(4,3) -2.6308 -2.8368 -2.1798 -2.5380 -2.1550 -2.1425 -2.1522 -2.1908
(3,4) -2.6314 -2.8374 -2.1801 -2.5384 -2.1554 -2.1428 -2.1526 -2.1911
(4,4) -2.6313 -2.8372 -2.1800 -2.5383 -2.1553 -2.1427 -2.1524 -2.1910
(5,4) -2.6312 -2.8371 -2.1798 -2.5381 -2.1551 -2.1426 -2.1523 -2.1908
(4,5) -2.6313 -2.8373 -2.1800 -2.5382 -2.1553 -2.1428 -2.1525 -2.1910
(5,5) -2.6312 -2.8372 -2.1799 -2.5381 -2.1552 -2.1426 -2.1524 -2.1908
HAR -2.6280 -2.8341 -2.1773 -2.5357 -2.1525 -2.1397 -2.1497 -2.1883

Table 4: BIC information criteria for various lag-order constellations. BIC values: ×10e7. Models are
estimated using the 3-step estimation approach.
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Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) 472.14 229.53 229.64 229.17 230.23 230.02 230.19 229.99
(1,1) 463.15 229.00 230.11 229.31 229.44 228.57 228.70 227.98
(2,1) 410.37 216.57 216.88 216.40 217.04 216.74 216.82 216.59

O
rd
er

o
f
ei
g
en
va
lu
e
p
ro
ce
ss (1,2) 411.70 216.89 216.90 216.70 216.96 216.89 216.94 216.75

(2,2) 410.12 216.50 216.24 216.24 216.66 216.33 216.57 216.23
(3,2) 413.72 222.43 222.82 222.30 223.76 223.47 223.52 221.87
(2,3) 408.66 216.43 216.28 216.19 216.43 216.68 216.61 216.40
(3,3) 409.83 217.14 216.77 216.74 217.02 216.68 216.71 216.65
(4,3) 417.61 219.02 217.56 218.43 218.08 217.56 218.09 217.61
(3,4) 409.43 216.20 216.27 216.06 216.43 216.30 216.40 216.17
(4,4) 408.87 215.96 216.41 215.76 216.32 216.20 216.29 216.10
(5,4) 409.95 216.47 216.66 216.12 216.82 216.28 216.75 216.24
(4,5) 409.37 216.32 216.47 216.20 216.41 216.25 216.36 216.08
(5,5) 408.90 216.35 216.37 216.06 216.29 216.14 216.26 215.99
HAR 408.75 218.19 224.40 218.02 218.04 223.19 217.90 218.98

Table 5: Average Ljung-Box autocorrelation test statistics computed over the 100× 101 = 5050 time series of
standardized Martingale di�erences computed for the realized (co)variance data. The 5% critical value of the
Ljung-Box test statistic at 200 lags is χ2

200 = 233.99.
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Eigenvalue Process
αi,1 αi,2 αi,3 βi,1 βi,2 βi,3 βi,4

∑p
`=1 αi,` +

∑q
`=1 βi,`

Median 0.311 0.074 0.000 0.132 0.068 0.135 0.135 0.978
Min. 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.947
Max. 0.492 0.180 0.116 0.519 0.348 0.373 0.378 0.987

Eigenvector Process
a b a+ b

0.035 0.962 0.997

Table 6: Summary of parameter estimates obtained by the DPC estimator for the 100-dimensional data-set
described in Section 5 and the BIC selected model order (3,4)-(1,1).
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Volatile Market: 01.01.2009− 31.12.2011

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 32289 8322 195.9 37.86 150.8
(2,2) 32036 8296 195.5 37.74 150.4
(3,3) 31943 8316 195.1 37.70 149.8
HAR 31682 8275 194.5 37.72 149.5

DPC-CAW0f (1,1) 32596 8511 193.5 37.76 147.0
(2,2) 32262 8466 193.2 37.67 146.7
(3,3) 32063 8450 192.9 37.65 146.2
HAR 31981 8415 193.0 37.64 146.4

Re-DCC-CAW (1,1) 32346 8222 229.1 39.72 201.5
(2,2) 32196 8155 228.8 39.59 200.4
(3,3) 32335 8239 228.6 39.53 199.3
HAR 33874 8137 235.9 40.37 186.0

O-CAW (1,1) 38834 10116 211.6 49.99 148.3
(2,2) 38626 10112 211.2 49.97 148
(3,3) 38528 10140 211.3 49.99 147.5
HAR 38328 10139 210.4 49.91 147.1

CCC-CAW (1,1) 34359 8222 273.2 41.62 225.2
(2,2) 34223 8155 273.2 41.54 224.7
(3,3) 34371 8239 273.2 41.51 223.9
HAR 35583 8137 273.2 42.40 204.7

EWMA 37178 9823 204.9 38.90 162.9
Factor-HEAVY (1,1) 32374 8056 208.7 55.11 118.3

(2,2) 32191 7997 208.0 54.88 120.3
(3,3) 31968 8047 207.5 54.76 120.8
HAR 31935 8053 206.8 55.00 119.9

Factor-CAW (1,1) 35079 9238 245.4 61.22 216.5
(2,2) 34658 9157 243.8 60.68 212.3
(3,3) 34554 9199 243.5 60.71 211.9
HAR 34237 9118 242.9 60.23 209.6

Table 7: Average daily 1-period ahead forecasting losses for the period 01.01.2009 − 31.12.2011. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1586 540.4 226.2 15.48 73.96
(2,2) 1580 539.7 226.3 15.49 74.09
(3,3) 1578 540.1 226.4 15.48 74.32
HAR 1571 538.6 227.0 15.49 74.90

DPC-CAW0f (1,1) 1600 542.4 225.4 15.48 66.76

(2,2) 1590 540.7 225.5 15.49 66.99
(3,3) 1585 540.2 225.4 15.48 67.05
HAR 1577 538.1 225.7 15.49 67.17

Re-DCC-CAW (1,1) 1742 597.8 242.8 16.60 94.67
(2,2) 1732 593.3 242.7 16.59 94.37
(3,3) 1729 592.8 242.6 16.59 94.10
HAR 1799 586.4 244.6 16.92 74.21

O-CAW (1,1) 1756 609.4 243.9 20.08 110.16
(2,2) 1750 608.2 244.2 20.08 110.43
(3,3) 1749 607.6 244.5 20.08 110.59
HAR 1743 605.5 245.2 20.11 111.14

CCC-CAW (1,1) 1840 597.8 265.3 18.11 96.27
(2,2) 1828 593.3 265.3 18.12 96.18
(3,3) 1824 592.8 265.3 18.16 96.23
HAR 1911 586.4 265.3 18.69 72.33

EWMA 1715 556.3 239.8 15.74 82.57
Factor-HEAVY (1,1) 1642 595.9 237.5 22.91 68.84

(2,2) 1639 596.8 237.3 22.93 67.42
(3,3) 1640 598.4 237.4 22.91 67.66
HAR 1624 583.5 237.5 23.00 67.00

Factor-CAW (1,1) 2446 770.9 299.5 41.80 296.47
(2,2) 2455 771.9 297.4 41.19 282.06
(3,3) 2455 772.0 296.5 41.09 277.03
HAR 2435 769.6 299.7 41.52 292.59

Table 8: Average daily 1-period ahead forecasting losses for the period 01.01.2012 − 31.12.2014. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Volatile Market: 01.01.2009− 31.12.2011

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 41745 10876 214.3 39.34 162.8
(2,2) 41309 10828 213.1 39.26 162.9
(3,3) 40643 10774 211.8 39.21 164.6
HAR 39061 10642 207.6 39.06 164.8

DPC-CAW0f (1,1) 40177 10741 210.3 39.21 160.3
(2,2) 39928 10701 209.8 39.16 160.4
(3,3) 39719 10671 209.5 39.12 161.0
HAR 38883 10643 207.8 38.93 162.4

Re-DCC-CAW (1,1) 44523 14599 234.6 41.92 209.7
(2,2) 43588 13916 234.3 41.63 206.2
(3,3) 42829 13403 234.0 41.30 202.8
HAR 44485 11301 242.2 44.15 176.9

O-CAW (1,1) 46821 11917 228.7 50.93 158.3
(2,2) 46446 11866 227.8 50.86 158.4
(3,3) 45727 11800 226.6 50.87 159.6
HAR 44256 11737 221.8 50.36 159.2

CCC-CAW (1,1) 46200 14599 274.2 43.68 232.4
(2,2) 45294 13981 274.2 43.52 231.0
(3,3) 44509 13403 274.2 43.34 227.0
HAR 45776 11301 274.2 46.38 193.4

EWMA 39319 10726 213.0 40.10 179.1
Factor-HEAVY (1,1) 46365 15265 240.5 58.82 133.2

(2,2) 45124 14320 238.5 57.62 143.3
(3,3) 43859 13690 236.7 57.43 142.0
HAR 42659 12376 239.5 62.98 120.4

Factor-CAW (1,1) 43528 11866 254.7 62.09 217.7
(2,2) 42886 11713 252.2 61.10 211.0
(3,3) 42600 11630 251.2 60.50 207.2
HAR 41240 11302 248.4 59.02 197.4

Table 9: Average daily 5-period ahead forecasting losses for the period 01.01.2009 − 31.12.2011. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1978 595.6 245.0 16.47 69.76
(2,2) 1933 592.4 243.6 16.39 71.55
(3,3) 1879 585.4 242.6 16.29 75.90
HAR 1876 583.2 241.4 16.24 75.02

DPC-CAW0f (1,1) 1927 592.5 243.4 16.39 68.13
(2,2) 1909 589.6 243.1 16.37 68.52
(3,3) 1895 587.2 242.9 16.34 69.12
HAR 1957 590.6 245.5 16.35 68.18

Re-DCC-CAW (1,1) 2121 694.8 247.4 17.57 90.19
(2,2) 2066 670.6 247.2 17.51 88.57
(3,3) 2029 651.7 247.2 17.43 86.91
HAR 2347 640.3 249.0 17.79 73.29

O-CAW (1,1) 2055 651.5 252.3 20.09 102.06
(2,2) 2024 645.9 252.3 20.18 104.34
(3,3) 1975 639.7 254.7 20.18 110.69
HAR 1990 643.7 251.1 20.05 106.14

CCC-CAW (1,1) 2241 694.8 265.5 19.10 87.23
(2,2) 2194 675.5 265.5 19.12 86.32
(3,3) 2140 651.7 265.5 19.12 85.22
HAR 2516 640.3 265.5 19.71 67.64

EWMA 1798 568.3 248.2 16.31 90.37
Factor-HEAVY (1,1) 2001 710.2 258.9 24.89 82.52

(2,2) 1962 683.4 258.2 24.40 85.38
(3,3) 1921 661.5 257.6 24.31 84.34
HAR 1849 610.8 256.9 26.15 74.36

Factor-CAW (1,1) 2659 789.2 298.8 41.41 260.71
(2,2) 2684 791.2 294.7 40.16 239.35
(3,3) 2693 791.5 293.2 39.85 230.35
HAR 2694 789.2 295.3 40.54 234.65

Table 10: Average daily 5-period ahead forecasting losses for the period 01.01.2012 − 31.12.2014. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Volatile Market: 01.01.2009− 31.12.2011

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 42407 11254 221.5 40.48 171.3
(2,2) 42291 11228 220.6 40.36 172.0
(3,3) 42256 11194 220.0 40.38 175.3
HAR 40828 11211 214.7 40.08 173.6

DPC-CAW0f (1,1) 41765 11145 218.7 40.35 169.4
(2,2) 41672 11126 218.2 40.28 169.6
(3,3) 41618 11123 217.8 40.20 170.2
HAR 41011 11263 215.6 39.80 170.1

Re-DCC-CAW (1,1) 48946 17292 239.7 45.08 221.7
(2,2) 47227 15863 239.4 44.57 218.1
(3,3) 45779 14767 239.1 44.00 214.1
HAR 48323 12257 247.8 46.78 187.9

O-CAW (1,1) 46903 12044 233.0 50.63 164.3
(2,2) 46752 11996 232.3 50.61 164.6
(3,3) 46622 11937 231.9 50.69 167.5
HAR 45254 11974 226.5 50.13 165.3

CCC-CAW (1,1) 50519 17292 274.8 46.29 243.8
(2,2) 48971 16108 274.8 46.01 243.3
(3,3) 47281 14767 274.8 45.52 237.4
HAR 49293 12257 274.8 48.49 201.3

EWMA 41217 11347 223.3 40.92 197.2
Factor-HEAVY (1,1) 53993 21772 263.0 62.15 149.8

(2,2) 50542 18477 259.3 60.19 160.6
(3,3) 48442 16832 256.0 60.35 158.6
HAR 46241 14408 255.0 64.94 136.1

Factor-CAW (1,1) 44877 12192 257.5 64.27 221.0
(2,2) 44265 12067 254.5 62.69 212.6
(3,3) 44012 12008 253.3 61.67 207.1
HAR 42949 11845 253.9 60.70 203.1

Table 11: Average daily 10-period ahead forecasting losses for the period 01.01.2009 − 31.12.2011. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 2368 640.9 258.4 17.17 68.59

(2,2) 2250 630.9 254.7 17.04 70.50
(3,3) 2107 614.2 250.8 16.84 76.54
HAR 2104 612.0 249.5 16.78 76.46

DPC-CAW0f (1,1) 2235 632.1 253.5 16.94 69.15
(2,2) 2189 625.4 252.8 16.91 69.44
(3,3) 2143 618.6 251.9 16.87 69.91
HAR 2220 623.4 254.6 16.87 69.67

Re-DCC-CAW (1,1) 2528 761.7 250.7 17.98 93.11
(2,2) 2402 722.2 250.5 17.93 90.65
(3,3) 2320 694.5 250.5 17.84 88.76
HAR 2685 687.7 252.1 18.34 79.24

O-CAW (1,1) 2358 692.5 255.8 20.03 97.69
(2,2) 2275 678.4 255.5 20.16 100.57
(3,3) 2142 662.6 257.1 20.14 109.60
HAR 2180 667.5 254.7 20.11 104.91

CCC-CAW (1,1) 2662 761.7 265.7 19.37 87.89
(2,2) 2558 732.8 265.7 19.39 86.99
(3,3) 2438 694.5 265.7 19.38 84.93
HAR 2859 687.7 265.7 19.90 73.43

EWMA 1889 577.1 255.0 16.77 98.88
Factor-HEAVY (1,1) 2299 828.1 263.8 26.35 91.51

(2,2) 2209 769.0 263.3 25.34 94.09
(3,3) 2122 727.8 262.7 25.37 91.42
HAR 2006 654.6 261.0 26.95 81.64

Factor-CAW (1,1) 2818 804.0 292.7 40.13 224.23
(2,2) 2867 807.5 287.9 38.04 201.12
(3,3) 2882 807.9 286.3 37.52 192.07
HAR 2821 800.4 292.4 39.52 216.50

Table 12: Average daily 10-period ahead forecasting losses for the period 01.01.2012 − 31.12.2014. The loss
functions are de�ned in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that
the 90% model con�dence set includes the respective model.
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Figure 1: Black line: realized variances and covariances ri,j of A (i = 1), AA (i = 2) and AAPL (i = 3); Gray
line: estimates of the individual Qt elements obtained via one-step QML estimation of the DPC-CAW model
as speci�ed in Section 3 to the according set of 3-dimensional realized covariance matrices.
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Figure 2: Average relative estimation errors for di (i = 1, . . . , 100) computed as arithmetic mean 1
500

∑500
j=1 100·

( ˆdi,j − di,j)/di,j over the estimates obtained for the 500 simulations. Black: T = 1000; blue: T = 2500;
magenta: T = 5000; red: T = 10000. The results are obtained from the DPC estimator for the simulation
experiment of Section 4. The DGP parameter values are reported at the top of the panel for a and on the left
side of the panel for (a+ b). Each line comprises 100 data points, one for each di in descending order with d1
being displayed on the left.
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Figure 3: Violin plots of relative estimation errors 100 · (â− a)/a obtained from the DPC estimator for the simulation
experiment of Section 4. The DGP parameter values are reported at the top of the panel for a and on the left side of
the panel for (a + b). The �rst violin plot in each subplot comprises results for T = 1000, the second for T = 2500,
the third for T = 5000 and the fourth for T = 10000. The white dot within the box indicates the median.
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Figure 4: Violin plots of relative estimation errors 100 · (b̂ − b)/b obtained from the DPC estimator for the
simulation experiment of Section 4. The DGP parameter values are reported at the top of the panel for b and
on the left side of the panel for (a + b). The �rst violin plot in each subplot comprises results for T = 1000,
the second for T = 2500, the third for T = 5000 and the fourth for T = 10000. The white dot within the box
indicates the median.

46



0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

a+
b=

0.
9 

a=0.025

0 20 40 60 80 100
-4

-3

-2

-1

0

1

2

a=0.035

0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

a=0.05

0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

a=0.1

0 20 40 60 80 100
-4

-3

-2

-1

0

1

2

a+
b=

0.
95

 

0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

0 20 40 60 80 100

-2
-1
0
1
2
3
4

0 20 40 60 80 100
-4
-3
-2
-1
0
1
2
3
4

a+
b=

0.
99

 

0 20 40 60 80 100

-2
-1
0
1
2
3
4

0 20 40 60 80 100

-2
-1
0
1
2
3
4

0 20 40 60 80 100

-2
-1
0
1
2
3
4

0 20 40 60 80 100

-2
-1
0
1
2
3
4

a+
b=

0.
99

7 

0 20 40 60 80 100

-2
-1
0
1
2
3
4
5

0 20 40 60 80 100

-2
-1
0
1
2
3
4
5

0 20 40 60 80 100
-2
-1
0
1
2
3
4
5
6

Figure 5: Average relative estimation errors for the eigenvalue persistence αi + βi computed as arithmetic

mean 1
500

∑500
j=1 100 ·( ̂αi,j + βi,j−(αi,j +βi,j))/(αi,j +βi,j) over the estimates obtained for the 500 simulations.

Black: T = 1000; blue: T = 2500; magenta: T = 5000; red: T = 10000. The results are obtained from the
DPC estimator for the simulation experiment of Section 4. The DGP parameter values are reported at the
top of the panel for a and on the left side of the panel for (a + b). Each line comprises 100 data points, one
for each αi + βi in descending order with α1 + β1 corresponding to the highest eigenvalue being displayed on
the left.
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Figure 6: Violin plots of average Euclidean norms (1/T )
∑

t vech(Ŝt−St)
′vech(Ŝt−St) over the 500 simulations.

The DGP parameter values are reported at the top of the panel for a and on the left side of the panel for
(a + b). The �rst violin plot in each subplot comprises results for T = 1000, the second for T = 2500, the
third for T = 5000 and the fourth for T = 10000. The white dot within the box indicates the median. The
results are obtained from the DPC estimator for the simulation experiment of Section 4.
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Figure 7: Violin plots of average relative biases (1/T )
∑

t(1/5050)
∑

i>j(Ŝij−Sij)/Sij over the 500 simulations.
The DGP parameter values are reported at the top of the panel for a and on the left side of the panel for
(a + b). The �rst violin plot in each subplot comprises results for T = 1000, the second for T = 2500, the
third for T = 5000 and the fourth for T = 10000. The white dot within the box indicates the median. The
results are obtained from the DPC estimator for the simulation experiment of Section 4.
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Figure 8: Realized (co)variance plots and sample autocorrelation functions (ACFs). Left panel: Sample of
realized variances and covariances ri,j of A (i = 1), AA (i = 2), AAPL (i = 3) and ABT (i = 4). Gray
shaded areas indicate the periods covered by the forecasting experiment of Section 5.3. Middle panel: Sample
ACFs of realized (co)variances together with 95% con�dence bounds under the null of zero serial correlation.
Right panel: Sample ACFs and according 95% con�dence bounds of standardized Pearson residuals obtained
from the BIC selected DPC-CAW(3,4)-(1,1) model estimated by the DPC estimator for the 100-dim. data-set
illustrated in Section 5.
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