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Realized Covariance Models

The increasing availability of high-frequency data has led to a
growing attention of the �nancial econometrics literature to the
modeling of time-series of realized covariance matrices.

• Gourieroux, Jasiak and Sufana (JoE, 2009) - Wishart
Autoregressive Process.

• Jin and Maheu (JoFE, 2012) - Wishart-RCOV-A(K) model.

• Jin and Maheu (JoE, 2016) - Bayesian semiparametric
modeling of RCs

• Noureldin, Shephard and Sheppard (JAE, 2012) - HEAVY
Models

• Golosnoy, Gribisch and Liesenfeld (JoE, 2012) -
Conditional Autoregressive Wishart (CAW) Models.

• Bauwens, Storti and Violante (2012, 2014, 2016) - Realized
DCC (ReDCC) Models
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Issues of existing RC Models

• Applications in high-dimensional settings are complicated if
not impossible (curse of dimensionality)

• Empirical applications therefore do not exceed the
10-dimensional case. (except for the ReDCC speci�cations)

• Realistic portfolios typically consist of hundreds of assets
which makes high-dimensional covariance matrix forecasting an
important �eld of research.
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Our Contribution

• We propose the Dynamic Principal Component (DPC)
CAW model for time-series of high-dimensional realized
covariance measures, based on the DPC-GARCH model of
Aielli and Caporin (2015)

• Bias and possible inconsistency of a multistep estimation
procedure (similar to multistep DCC-GARCH estimation)
assessed in an extensive simulation experiment.

• Forecasting ability assessed via the Model Con�dence Set
(MCS) of Hansen et al. (2011).

• In-sample �t for various model-order settings examined via the
BIC information criterion.
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Realized Covariances Measures

Realized covariance matrix:

RCt =
m∑
j=1

rj ,tr
′
j ,t , (1)

where rj ,t = y
(
(t − 1) + j/m

)
− y
(
(t − 1) + (j − 1)/m

)
is the j 'th

intraday return vector on day t.

• RCt is a well-known consistent nonparametric ex-post estimate
of the 'true' integrated covariance matrix.

• If the data contains microstructure noise, jumps or
non-synchronous trading, several alternatives, such as the
multivariate realized kernel of Barndor�-Nielsen et al. (2011)
can be employed.
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DPC-CAW Speci�cation Overview

CAW distributional assumption:

Rt |Ft−1 ∼ Wn(ν, St/ν), ⇒ E [Rt |Ft−1] = St (2)

DPC scale matrix spectral decomposition:

St = LtDtL
′
t (3)

Eigenvector process:

Qt = (1− a− b) LDL′ + a Rt−1 + b Qt−1, (4)

Qt = LtGtL
′
t (5)

Eigenvalue process:

di ,t = (1− αi − βi )di + αi (e ′iL
′
tRtLtei ) + βi di ,t−1 (6)
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The Conditional Autoregressive Wishart (CAW) Framework

Rt |Ft−1 ∼ Wn(ν, St/ν)

• The realized covariance measure Rt is assumed to follow a
central Wishart distribution with ν > n degrees of freedom,
and symmetric, positive de�nite n × n scale matrix St/ν.

• St can follow any kind of dynamic autoregressive speci�cation
for symmetric, p.d. matrices.
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Scale Matrix St

St is de�ned by an eigenvector (Lt) and an eigenvalue (Dt) process.

St = LtDtL
′
t

• Dt = diag(d1,t , d2,t , . . . , dn,t) are the eigenvalues; the columns
of Lt are the corresponding orthonormal eigenvectors.

• Dynamic extension of the prominent orthogonal GARCH
(OGARCH) model of Alexander (2001).
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Eigenvector Process

The auxiliary process is de�ned as a scalar BEKK recursion for
realized covariance measures.

Qt = (1− a− b)S + a Rt−1 + b Qt−1,

Qt = LtGtL
′
t .

• The scalars a and b and the intercept matrix S are parameters
to be estimated.

Assumption 1

The eigenvalues in a spectral decomposition are arranged in strictly

decreasing order.

Assumption 2

0 ≤ a, 0 ≤ b, a + b < 1 ; S and Q0 are positive de�nite.
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Eigenvalue Process

The eigenvalues di ,t are assumed to follow n independent
GARCH-type recursions:

di ,t = (1− αi − βi )di + αi gi ,t−1 + βi di ,t−1, i = 1 . . . n

where gi ,t = e ′iL
′
tRtLtei and ei is a vector of zeros with a one on

the i'th position.

• di are the eigenvalues of the intercept matrix S = LDL′ of the
eigenvector process.

• gi ,t is the i 'th diagonal element of the random matrix L′tRtLt .

gi ,t |Ft−1 ∼Gamma(ν/2, 2di ,t/ν). (7)

Assumption 3

0 ≤ αi , 0 ≤ βi , αi + βi < 1, 0 < d0,i ∀i .
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Properties

E [gi ,t |Ft−1] = E [e ′i L
′
tRtLt ei |Ft−1] = e ′iL

′
tStLtei

= e ′iL
′
tLtDtL

′
tLtei = e ′iDtei

= di ,t . (8)

E [di ,t ] = (1− αi − βi )di + αi E [gi ,t−1] + βi E [di ,t−1]

= (1− αi − βi )di + αi E [E [gi ,t |Ft−1]] + βi E [di ,t−1]

= (1− αi − βi )di + αi E [di ,t−1] + βi E [di ,t−1]

⇒ E [di ,t ] = di . (9)

Since the di are arranged in decreasing order (Assumption 1):

⇒ E [d1,t ] > E [d2,t ] > . . . > E [dn,t ]. (10)
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Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

L∗(ψ) =
T∑
t=1

−1
2

[
ln |St(ψ)|+ tr

(
St(ψ)−1Rt

)]
, (11)

where ψ = (vech(S)′, a, b, {αi , βi}ni=1)′ summarizes the parameters
for the Qt and di ,t recursions.

• The parameters of the actual likelihood function are ψ and ν
but ν can be treated as nuisance parameter due to its
irrelevance in the realized covariance matrix forecast.

• The score vector is a martingale di�erence sequence, which
implies the quasi-likelihood interpretation.

• L∗(ψ) is also the QL function of MGARCH models.
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Three-Step Estimation - The DPC estimator

Aielli and Caporin (2015) propose a sequential estimation technique
for high-dimensional applications called the DPC estimator. It is
easily adapted to the CAW framework:

1. Estimate S = LDL′ via Ŝ = T−1
∑T

t=1 Rt ;

2. Conditional on step 1. estimate (a, b)′ by �tting a scalar CAW
model to {Rt}, essentially assuming Rt |Ft−1 ∼ Wn(ν,Qt/ν),

with S
!

= Ŝ . Recover Q̂t to calculate ĝi ,t for i = 1, . . . , n;

3. Conditional on 1. and 2. estimate {αi , βi}ni=1 via univariate
QML based on Eqs. (6) and (7) separately ∀i .
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Small Sample Properties of the DPC Estimator

The simulation experiment shows:

• Low to moderate biases in low ARCH / low persistence
environments.

• In high ARCH / high persistence environments distortions
occur which mainly a�ect the eigenvalues di for i > 3. These
eigenvalues are rather low in absolute value.

• Hence biases are not expected to signi�cantly a�ect the
forecasting performance of the DPC-CAW model.
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Empirical Application - Data

• 100 stocks selected by liquidity from the S&P 500

• Realized covariance measures computed from one-minute
intraday asset returns by the microstructure-noise and jump
robust multivariate realized kernel method of Barndor�-Nielsen
at al. (2011)

• The (co)variance processes are highly persistent, skewed to the
right, leptokurtic and tend to move parallel to each other.

• January 1, 2002 to December 31, 2014, covering 3271 trading
days
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Estimation Results - BIC

Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) -2.5515 -2.7671 -2.0818 -2.4645 -2.0505 -2.0298 -2.0460 -2.0998
(1,1) -2.6289 -2.8342 -2.1779 -2.5363 -2.1531 -2.1402 -2.1502 -2.1892
(2,1) -2.6287 -2.8340 -2.1778 -2.5361 -2.1531 -2.1404 -2.1503 -2.1890

O
rd
er

o
f
ei
g
en
va
lu
e
pr
o
ce
ss (1,2) -2.6304 -2.8361 -2.1793 -2.5377 -2.1546 -2.1418 -2.1517 -2.1905

(2,2) -2.6303 -2.8360 -2.1793 -2.5376 -2.1546 -2.1420 -2.1518 -2.1904
(3,2) -2.6301 -2.8358 -2.1791 -2.5374 -2.1544 -2.1418 -2.1516 -2.1902
(2,3) -2.6311 -2.8371 -2.1801 -2.5384 -2.1553 -2.1428 -2.1525 -2.1911
(3,3) -2.6309 -2.8370 -2.1799 -2.5382 -2.1552 -2.1426 -2.1524 -2.1909
(4,3) -2.6308 -2.8368 -2.1798 -2.5380 -2.1550 -2.1425 -2.1522 -2.1908
(3,4) -2.6314 -2.8374 -2.1801 -2.5384 -2.1554 -2.1428 -2.1526 -2.1911
(4,4) -2.6313 -2.8372 -2.1800 -2.5383 -2.1553 -2.1427 -2.1524 -2.1910
(5,4) -2.6312 -2.8371 -2.1798 -2.5381 -2.1551 -2.1426 -2.1523 -2.1908
(4,5) -2.6313 -2.8373 -2.1800 -2.5382 -2.1553 -2.1428 -2.1525 -2.1910
(5,5) -2.6312 -2.8372 -2.1799 -2.5381 -2.1552 -2.1426 -2.1524 -2.1908
HAR -2.6280 -2.8341 -2.1773 -2.5357 -2.1525 -2.1397 -2.1497 -2.1883

Table: BIC information criteria for various lag-order constellations. BIC values:
×10e7. Models are estimated using the 3-step estimation approach. The BIC is
evaluated at the full (one-step) likelihood.
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Estimation Results - DPC-CAW(1,1)-(3,4)

Eigenvalue Process
αi,1 αi,2 αi,3 βi,1 βi,2 βi,3 βi,4

∑p
`=1

αi,` +
∑q

`=1
βi,`

Median 0.311 0.074 0.000 0.132 0.068 0.135 0.135 0.978
Min. 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.947
Max. 0.492 0.180 0.116 0.519 0.348 0.373 0.378 0.987

Eigenvector Process
a b a + b

0.035 0.962 0.997

Table: Summary of parameter estimates obtained by the DPC estimator for the
100-dimensional data-set described in Section ?? and the BIC selected model order
(3,4)-(1,1).
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Estimation Diagnostics - DPC-CAW(1,1)-(3,4)
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Figure: Realized (co)variance plots and sample autocorrelation functions (ACFs).
Left panel: Sample of realized variances and covariances. Middle panel: Sample ACFs
of realized (co)variances with 95% con�dence bounds. Right panel: Sample ACFs and
95% con�dence bounds of standardized Pearson residuals obtained from the BIC
selected DPC-CAW(3,4)-(1,1)



Introduction The DPC-CAW Model Empirical Application Conclusion

Forecasting Evaluation

Loss Functions:

L(X̂ ,X ) = vech(X̂ − X )′ vech(X̂ − X )

(i) MSE of predicted covariance matrix: L(R̂t ,Rt);

(ii) MSE of predicted variances:
(
diag(R̂t − Rt)

)′ (
diag(R̂t − Rt)

)
;

(iii) MSE of predicted correlation matrix: L(ρ̂t , ρt);

(iv) Variance of predicted global minimum variance portfolio
(GMVP): VGMPV ,t ;

(v) QLIKE: QLIKEt = ln |R̂t |+ vec
(
R̂−1t Rt

)′
ι.

The Model Con�dence Set (MCS) by Hansen et al. (2011)
contains the best model at con�dence level 1− α. Below we
choose α = 0.1.
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(iv) Variance of predicted global minimum variance portfolio
(GMVP): VGMPV ,t ;

(v) QLIKE: QLIKEt = ln |R̂t |+ vec
(
R̂−1t Rt

)′
ι.
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contains the best model at con�dence level 1− α. Below we
choose α = 0.1.
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Competing Forecasting Models - Scalar Re-DCC

Rt |Ft−1 ∼ Wn(ν, St/ν), (12)

St = VtρtVt , Vt = diag(
√
s11,t ,

√
s22,t , . . . ,

√
snn,t) (13)

where ρt is the correlation matrix implied by St .

sii ,t = γi +

p∑
k=1

αk,i rii ,t−k +

q∑
l=1

βk,i sii ,t−l . (14)

ρt = (1− a− b)ρ̄+ aPt−1 + bρt−1, (15)

where Pt is the realized correlation matrix

Pt = {diag(Rt)}−1/2Rt{diag(Rt)}−1/2. (16)

Three-step estimation similar to the DPC estimator: ρ̄ is estimated
by the sample mean of realized correlation measures (�correlation
targeting�).
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Competing Forecasting Models - CCC, O-CAW, EMWA

• CCC-CAW model (Re-DCC speci�cation where a = b = 0).

• OGARCH-CAW (DPC-CAW speci�cation where a = b = 0 ).

• Exponentially weighted moving average (EWMA) speci�cation

E [Rt |Ft−1] = (1− λ)Rt−1 + λE [Rt−1|Ft−2], (17)

with preset smoothing parameter λ = 0.94 (see J.P. Morgan,
1996).

• DPC-CAW0f model (restricting αi = α and βi = β
∀i = 1, . . . , n in the DPC-CAW eigenvalue recursions).
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Forecasting - Volatile Market
Volatile Market: 01.01.2009− 31.12.2011

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 32289 8322 195.9 37.86 150.8
(2,2) 32036 8296 195.5 37.74 150.4
(3,3) 31943 8316 195.1 37.7 149.8

DPC-CAW0f (1,1) 32596 8511 193.5 37.76 147.0
(2,2) 32262 8466 193.2 37.67 146.7
(3,3) 32063 8450 192.9 37.65 146.2

Re-DCC-CAW (1,1) 32346 8222 229.1 39.72 201.5
(2,2) 32196 8155 228.8 39.59 200.4
(3,3) 32335 8239 228.6 39.53 199.3

O-CAW (1,1) 38834 10116 211.6 49.99 148.3
(2,2) 38626 10112 211.2 49.97 148
(3,3) 38528 10140 211 49.99 147.5

CCC-CAW (1,1) 34359 8222 273.2 41.62 225.2
(2,2) 34223 8155 273.2 41.54 224.7
(3,3) 34371 8239 273.2 41.51 223.9

EWMA 37178 9823 204.9 38.9 162.9

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90%
model con�dence set includes the respective model.
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Forecasting - Calm Market
Calm Market: 01.01.2012− 31.12.2014

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1586 540.4 226.2 15.48 73.96
(2,2) 1580 539.7 226.3 15.49 74.09
(3,3) 1578 540.1 226.4 15.48 74.32

DPC-CAW0f (1,1) 1600 542.4 225.4 15.48 66.76

(2,2) 1590 540.7 225.5 15.49 66.99
(3,3) 1585 540.2 225.4 15.48 67.05

Re-DCC-CAW (1,1) 1742 597.8 242.8 16.6 94.67
(2,2) 1732 593.3 242.7 16.59 94.37
(3,3) 1729 592.8 242.6 16.59 94.10

O-CAW (1,1) 1756 609.4 243.9 20.08 110.16
(2,2) 1750 608.2 244.2 20.08 110.43
(3,3) 1749 607.6 244.5 20.08 110.59

CCC-CAW (1,1) 1840 597.8 265.3 18.11 96.27
(2,2) 1828 593.3 265.3 18.12 96.18
(3,3) 1824 592.8 265.3 18.16 96.23

EWMA 1715 556.3 239.8 15.74 82.57

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90%
model con�dence set includes the respective model.
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Conclusion

• An extensive simulation experiment con�rms satisfying �nite
sample properties of the three-step estimation approach.

• The DPC-CAW model has particularly good forecasting
properties and outperforms its competitors including
DCC-CAW speci�cations for realized covariance measures.

• We provide an empirical application to realized covariance
measures for 100 assets traded at the NYSE matrices.
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