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The increasing availability of high-frequency data has led to a
growing attention of the financial econometrics literature to the
modeling of time-series of realized covariance matrices.
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Realized Covariance Models

The increasing availability of high-frequency data has led to a
growing attention of the financial econometrics literature to the
modeling of time-series of realized covariance matrices.
e Gourieroux, Jasiak and Sufana (JoE, 2009) - Wishart
Autoregressive Process.

e Jin and Maheu (JoFE, 2012) - Wishart-RCOV-A(K) model.

e Jin and Maheu (JoE, 2016) - Bayesian semiparametric
modeling of RCs

e Noureldin, Shephard and Sheppard (JAE, 2012) - HEAVY
Models

¢ Golosnoy, Gribisch and Liesenfeld (JoE, 2012) -
Conditional Autoregressive Wishart (CAW) Models.

e Bauwens, Storti and Violante (2012, 2014, 2016) - Realized
DCC (ReDCC) Models



Introduction
0e00

Issues of existing RC Models

e Applications in high-dimensional settings are complicated if
not impossible (curse of dimensionality)

e Empirical applications therefore do not exceed the
10-dimensional case. (except for the ReDCC specifications)
e Realistic portfolios typically consist of hundreds of assets

which makes high-dimensional covariance matrix forecasting an
important field of research.
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Our Contribution

e We propose the Dynamic Principal Component (DPC)
CAW model for time-series of high-dimensional realized
covariance measures, based on the DPC-GARCH model of
Aielli and Caporin (2015)

e Bias and possible inconsistency of a multistep estimation
procedure (similar to multistep DCC-GARCH estimation)
assessed in an extensive simulation experiment.

e Forecasting ability assessed via the Model Confidence Set
(MCS) of Hansen et al. (2011).

e In-sample fit for various model-order settings examined via the
BIC information criterion.
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Realized Covariances Measures
Realized covariance matrix:
m
RCt = Z ’ijt,:[{,tW (1)
j=1

where rj, = y((t = 1) +j/m) —y((t = 1)+ (j — 1)/m) is the j'th
intraday return vector on day t.
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Realized Covariances Measures

Realized covariance matrix:
m
/
RCe=> rjerfs, (1)
Jj=1

where rj, = y((t = 1) +j/m) —y((t = 1)+ (j — 1)/m) is the j'th
intraday return vector on day t.

e RC; is a well-known consistent nonparametric ex-post estimate
of the 'true’ integrated covariance matrix.

e If the data contains microstructure noise, jumps or
non-synchronous trading, several alternatives, such as the
multivariate realized kernel of Barndorff-Nielsen et al. (2011)
can be employed.
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DPC-CAW Specification Overview

CAW distributional assumption:
Rt‘Ft—l ~ Wn(V, St/l/), = E[Rt’ft_l] = St (2)

DPC scale matrix spectral decomposition:

St = LtDtL/t (3)

Eigenvector process:
Q = (l—a—-b)LDL' +aRi 1+ bQ;_1, (4)
Q: = L:Gl, (%)

Eigenvalue process:

dit=(1—a;—Bi)d +aj (ejLiReLrei) + Bi dir—1 (6)
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The Conditional Autoregressive Wishart (CAW) Framework

Rt|ft_1 ~ W,-,(I/, St/l/)

e The realized covariance measure R; is assumed to follow a
central Wishart distribution with v > n degrees of freedom,
and symmetric, positive definite n x n scale matrix S;/v.

e S; can follow any kind of dynamic autoregressive specification
for symmetric, p.d. matrices.
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Scale Matrix S;

S is defined by an eigenvector (L;) and an eigenvalue (D;) process.

51_- - LtDtI—/t

o D; =diag(dit,doy¢, ..., dn¢) are the eigenvalues; the columns
of L; are the corresponding orthonormal eigenvectors.

e Dynamic extension of the prominent orthogonal GARCH
(OGARCH) model of Alexander (2001).
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Eigenvector Process

The auxiliary process is defined as a scalar BEKK recursion for
realized covariance measures.

Qt = (1—3—b)5+3Rt_1+th_1,
Q: L:GeLs.

e The scalars a and b and the intercept matrix S are parameters
to be estimated.

Assumption 1

The eigenvalues in a spectral decomposition are arranged in strictly
decreasing order.

Assumption 2
0<a,0<b, a+b<1l; Sand Qy are positive definite.
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Eigenvalue Process

The eigenvalues d; ; are assumed to follow n independent
GARCH-type recursions:

dit=(1—oj— Bi)di + i git—1 + Bi dit—1, i=1...n

)

where gj + = e/L,R:L;ej and e is a vector of zeros with a one on
the i'th position.

e d; are the eigenvalues of the intercept matrix S = LDL' of the
eigenvector process.

e g+ is the i'th diagonal element of the random matrix LiR;L;.
gi.t|Fr—1 ~ Gamma(v/2,2d; ;/v). (7)

Assumption 3
0 <aqj, Ogﬂ;, Oéf+ﬁf< 1, 0<d07,' Vi.
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Properties

E[g,'7t|ft71] = E[e,/ L;RtLt e,'|./_'.t71] = e,{L;_.StLtei
= e,{L;LtDtL/tLte,' = el{Dte,'
= djt. (8)

Eld;¢] = (1 — o — Bj)d; + a; E[gi,t—1] + Bi E[di+—1]
= (1 — a; — Bi)d; + o; E[E[gi t|Fe-1]] + Bi E[di,t—1]
= (1—aj— Bi)di + aj E[d; —1] + Bi E[d;+-1]
= E[d; ] = d;. (9)

Since the d; are arranged in decreasing order (Assumption 1):

= E[ds] > Edae] > ... > E[dne]. (10)
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DPC-CAW Specification Overview

CAW distributional assumption:
Re|Fie1 ~ Wh(v, St/v), = E[R¢|Fi-1] = St
DPC scale matrix spectral decomposition:
St = LDl
Eigenvector process:

Qt = (1—a—b) LDL,—}—aRtf]_—}—thf]_,
Qt = LthI-/t

Eigenvalue process:

dit=(1—a;—Bi)d +a; (ejLiReLee;) + Bi dip—1

Conclusion
o]
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Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

T

@) = Y -5 IS+t (S@)R)]. (@)

t=1

where ¢ = (vech(S)', a, b, {«j, Bi}"_;)’ summarizes the parameters
for the Q; and d; ; recursions.
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@) = Y -5 IS+t (S@)R)]. (@)

t=1

where ¢ = (vech(S)', a, b, {«j, Bi}"_;)’ summarizes the parameters
for the Q; and d; ; recursions.

e The parameters of the actual likelihood function are ¢ and v
but v can be treated as nuisance parameter due to its
irrelevance in the realized covariance matrix forecast.
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implies the quasi-likelihood interpretation.
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Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

T

@) = Y -5 IS+t (S@)R)]. (@)

t=1

where ¢ = (vech(S)', a, b, {«j, Bi}"_;)’ summarizes the parameters
for the Q; and d; ; recursions.

e The parameters of the actual likelihood function are ¢ and v
but v can be treated as nuisance parameter due to its
irrelevance in the realized covariance matrix forecast.

e The score vector is a martingale difference sequence, which
implies the quasi-likelihood interpretation.

e L*(¢) is also the QL function of MGARCH models.
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Three-Step Estimation - The DPC estimator

Aielli and Caporin (2015) propose a sequential estimation technique
for high-dimensional applications called the DPC estimator. It is
easily adapted to the CAW framework:
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Three-Step Estimation - The DPC estimator

Aielli and Caporin (2015) propose a sequential estimation technique
for high-dimensional applications called the DPC estimator. It is
easily adapted to the CAW framework:

1. Estimate S = LDL' via $ =T '3 | Ry
2. Conditional on step 1. estimate (a, b)’ by fitting a scalar CAW
model to {R;}, essentially assuming R;|Fi—1 ~ Wy(v, Q:/v),

. N A N .
with S = 5. Recover Q; to calculate g for i =1,...,n;
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Three-Step Estimation - The DPC estimator

Aielli and Caporin (2015) propose a sequential estimation technique
for high-dimensional applications called the DPC estimator. It is
easily adapted to the CAW framework:

1. Estimate S = LDL' via $ =T '3 | Ry

2. Conditional on step 1. estimate (a, b)’ by fitting a scalar CAW
model to {R;}, essentially assuming R;|Fi—1 ~ Wy(v, Q:/v),

. N A N .
with S = 5. Recover Q; to calculate g for i =1,...,n;

3. Conditional on 1. and 2. estimate {«;, §;}7_; via univariate
QML based on Egs. (6) and (7) separately Vi.
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Small Sample Properties of the DPC Estimator

The simulation experiment shows:

e Low to moderate biases in low ARCH / low persistence
environments.

Conclusion
o]
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Small Sample Properties of the DPC Estimator

The simulation experiment shows:
e Low to moderate biases in low ARCH / low persistence
environments.
e In high ARCH / high persistence environments distortions
occur which mainly affect the eigenvalues d; for i > 3. These
eigenvalues are rather low in absolute value.
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Small Sample Properties of the DPC Estimator

The simulation experiment shows:
e Low to moderate biases in low ARCH / low persistence
environments.
e In high ARCH / high persistence environments distortions
occur which mainly affect the eigenvalues d; for i > 3. These
eigenvalues are rather low in absolute value.

e Hence biases are not expected to significantly affect the
forecasting performance of the DPC-CAW model.
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Empirical Application - Data

100 stocks selected by liquidity from the S&P 500

Realized covariance measures computed from one-minute
intraday asset returns by the microstructure-noise and jump
robust multivariate realized kernel method of Barndorff-Nielsen
at al. (2011)

The (co)variance processes are highly persistent, skewed to the
right, leptokurtic and tend to move parallel to each other.
January 1, 2002 to December 31, 2014, covering 3271 trading
days
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Estimation Results - BIC

Order of eigenvector process

(1,0) (1,1) (2,1) (1,2) (2,2) (3.2) (2,3) (3.3)
(1,0) -2.5515 -2.7671 -2.0818 -2.4645 -2.0505 -2.0298 -2.0460 -2.0998
(1,1) -2.6289 -2.8342 -2.1779 -2.5363 -2.1531 -2.1402 -2.1502 -2.1892
(2,1) -2.6287 -2.8340 -2.1778 -2.5361 -2.1531 -2.1404 -2.1503 -2.1890
ﬁ (1,2) -2.6304 -2.8361 -2.1793 -2.5377 -2.1546 -2.1418 -2.1517 -2.1905
§ (2,2) -2.6303 -2.8360 -2.1793 -2.5376 -2.1546 -2.1420 -2.1518 -2.1904
3 (3,2) -2.6301 -2.8358 -2.1791 -2.5374 -2.1544 -2.1418 -2.1516 -2.1902
T:‘“ (2,3) -2.6311 -2.8371 -2.1801 -2.5384 -2.1553 -2.1428 -2.1525 -2.1911
z (3,3) -2.6309 -2.8370 -2.1799 -2.5382 -2.1552 -2.1426 -2.1524 -2.1909
_g_hi) (4,3) -2.6308 -2.8368 -2.1798 -2.5380 -2.1550 -2.1425 -2.1522 -2.1908
o (3.4) -2.6314 -2.8374 -2.1801 -2.5384 -2.1554 -2.1428 -2.1526 -2.1911
S (4,4) -2.6313 -2.8372 -2.1800 -2.5383 -2.1553 -2.1427 -2.1524 -2.1910
'%é (5,4) -2.6312 -2.8371 -2.1798 -2.5381 -2.1551 -2.1426 -2.1523 -2.1908
o (45) -2.6313 -2.8373 -2.1800 -2.5382 -2.1553 -2.1428 -2.1525 -2.1910
(5,5) -2.6312 -2.8372 -2.1799 -2.5381 -2.1552 -2.1426 -2.1524 -2.1908
HAR -2.6280 -2.8341 -2.1773 -2.5357 -2.1525 -2.1397 -2.1497 -2.1883
Table: BIC information criteria for various lag-order constellations. BIC values:

x10e7. Models are estimated using the 3-step estimation approach. The BIC is
evaluated at the full (one-step) likelihood.



Introduction The DPC-CAW Model Empirical Application

Conclusion
0000 0000000000 008000000 o
Estimation Results - DPC-CAW(1,1)-(3,4)
Eigenvalue Process
Qi1 Qi2 Qi3 Bi1 Bi2 Bi3 Bia Sl ict iy Bie

Median 0.311 0.074 0.000 0.132 0.068 0.135 0.135 0.978

Min. 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.947

Max. 0.492 0.180 0.116 0.519 0.348 0.373 0.378 0.987
Eigenvector Process

a b a+b

0.035 0.962 0.997

Table: Summary of parameter estimates obtained by the DPC estimator for the

100-dimensional data-set described in Section ?? and the BIC selected model order
(3,4)-(1.,1).
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Estimation Diagnostics - DPC-CAW(1,1)-(3,4)
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Left panel: Sample of realized variances and covariances. Middle panel: Sample ACFs
of realized (co)variances with 95% confidence bounds. Right panel: Sample ACFs and
95% confidence bounds of standardized Pearson residuals obtained from the BIC

selected DPC-CAW(3,4)-(1,1)
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Forecasting Evaluation

Loss Functions:

L(X,X) = vech(X — X)' vech(X — X)
(i) MSE of predicted covariance matrix: L(R:, R:);
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1) MSE of predicted covariance matrix: L(ét, R:);
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(i) MSE of predicted variances: (diag(li’t - Rt))/ (diag(li’t — Ry));
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Forecasting Evaluation

Loss Functions:

L(X,X) = vech(X — X)' vech(X — X)
(i) MSE of predicted covariance matrix: L(R:, R:);

(i) MSE of predicted variances: (diag(li’t - Rt))/ (diag(li’t — Ry));
)

(iii

MSE of predicted correlation matrix: L(g¢, pt);
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Forecasting Evaluation

Loss Functions:

L(X,X) = vech(X — X)' vech(X — X)
(i)

(i)
(iii)
(iv) Variance of predicted global minimum variance portfolio
(GMVP): Veumpy t;

MSE of predicted covariance matrix: L(R:, Ry);
MSE of predicted variances: (dlag(Rt - Rt)) (dlag(li’t — Ry));
MSE of predicted correlation matrix: L(g¢, pt);
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Forecasting Evaluation
Loss Functions:

L(X,X) = vech(X — X)' vech(X — X)

(i) MSE of predicted covariance matrix: L(R:, R:);

(i) MSE of predicted variances: (dlag(Rt - Rt)) (dlag(li’t — Ry));
(iii) MSE of predicted correlation matrix: L(f¢, pt);

(iv) Variance of predicted global minimum variance portfolio

(GMVP): Vempv t;
~ ~ /
(v) QLIKE: QLIKE; = In|R,| + vec(RglRt) L
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Forecasting Evaluation
Loss Functions:

L(X,X) = vech(X — X)' vech(X — X)

(i) MSE of predicted covariance matrix: L(R:, R:);

(i) MSE of predicted variances: (dlag(Rt - Rt)) (dlag(ﬁt — Ry));
(iii) MSE of predicted correlation matrix: L(f¢, pt);

(iv) Variance of predicted global minimum variance portfolio

(GMVP): Vempv t;
~ ~ /
(v) QLIKE: QLIKE; = In|R,| + vec(RglRt) L

The Model Confidence Set (MCS) by Hansen et al. (2011)
contains the best model at confidence level 1 — .. Below we
choose v = 0.1.
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Competing Forecasting Models - Scalar Re-DCC

Rt’ft—l ~ Wn(V7 St/y)a (12)
St = tht Vt, Vt = diag(\/sn’t, \/522,7?7 ey w/snn,t) (13)

where p; is the correlation matrix implied by S;.

p g

it =i+ Z Qg iliit—k + Z B, iSii t—1- (14)
k=1 =1

pt=(1—a—b)p+ aPi_1+ bpt_1, (15)

where P; is the realized correlation matrix
P, = {diag(R:)} Y/?R{diag(R:)} /2. (16)

Three-step estimation similar to the DPC estimator: p is estimated
by the sample mean of realized correlation measures (“correlation
targeting”).
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Competing Forecasting Models - CCC, O-CAW, EMWA

CCC-CAW model (Re-DCC specification where a = b = 0).
OGARCH-CAW (DPC-CAW specification where a=b=0).
Exponentially weighted moving average (EWMA) specification

E[R|Fe-1] = (1 = MRe_1 + AE[Re 1| Fe o], (17)

with preset smoothing parameter A = 0.94 (see J.P. Morgan,
1996).

DPC-CAWqyr model (restricting a; = o and 3, = 8
Vi=1,...,nin the DPC-CAW eigenvalue recursions).
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Volatile Market: 01.01.2009 — 31.12.2011

Model (p.g) Cov Var Corr GMVP QLIKE
matrix %102
DPC-CAW (1,1) 32289 8322 195.9 37.86 150.8
(2,2) = 32036 8296 195.5 37.74 150.4
(33) 31943 8316 1951 | 377 149.8
DPC-CAWyf (1,1) 32596 8511 1935 37.76 147.0
(2,2) 32262 8466 193.2 37.67 146.7
(3,3) 32063 8450 192.9 37.65 146.2
Re-DCC-CAW  (1,1) 32346 8222 229.1 39.72 201.5
(2,2) 32196 8155 22838 39.59 200.4
(3.3) 32335 8239 228.6 39.53 199.3
0O-CAW (1,1) 38834 10116 211.6 49.99 148.3
(2,2) 38626 10112 2112 49.97 148
(3,3) 38528 10140 211 49.99 1475
CCC-CAW (1,1) 34359 8222 2732 41.62 225.2
(2,2) 34223 8155 2732 41.54 2247
(3,3) 34371 8239 273.2 41.51 2239
EWMA 37178 9823 204.9 38.9 162.9

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90%

model confidence set includes the respective model.
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Forecasting - Calm Market

Calm Market: 01.01.2012 — 31.12.2014

Model (p.a) Cov Var Corr GMVP QLIKE
matrix x10?
DPC-CAW (1,1) 1586 540.4 226.2 1548 73.96
(22) 1580 539.7 2263 1549 74.09
(33) 1578 5401 2264 1548 7432
DPC-CAWyr (1.1) 1600 5424 225.4 15.48 66.76
(2,2) 1590 5407 2255 1549  66.99
(3.3) 1585 5402 2254 15.48 67.05
Re-DCC-CAW  (1,1) 1742 597.8 242.8 16.6 94.67
(22) 1732 593.3 2427 16.59 94.37
(3.3) 1720 5928 2426 1659  94.10
O-CAW (1,1) 1756 609.4 243.9 20.08 110.16
(22) 1750 608.2 2442 20.08 110.43
(3.3) 1749 607.6 244.5 20.08 110.59
CCC-CAW (1,1) 1840 597.8 265.3 18.11 96.27
(2,2) 1828 593.3 265.3 18.12 96.18
(3.3) 1824 592.8 265.3 18.16 96.23
EWMA 1715 556.3 239.8 15.74 82.57

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90%

model confidence set includes the respective model.
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Conclusion

e An extensive simulation experiment confirms satisfying finite
sample properties of the three-step estimation approach.



Conclusion
[ ]

Conclusion

e An extensive simulation experiment confirms satisfying finite
sample properties of the three-step estimation approach.

e The DPC-CAW model has particularly good forecasting
properties and outperforms its competitors including
DCC-CAW specifications for realized covariance measures.
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Conclusion

e An extensive simulation experiment confirms satisfying finite
sample properties of the three-step estimation approach.

e The DPC-CAW model has particularly good forecasting
properties and outperforms its competitors including
DCC-CAW specifications for realized covariance measures.

e We provide an empirical application to realized covariance
measures for 100 assets traded at the NYSE matrices.
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