Dynamic Principal Component CAW Models for High-Dimensional Realized Covariance Matrices

Bastian Gribisch and Michael Stollenwerk

May 24, 2018

The DPC-CAW Model

Empirical Application

Conclusion O

Introduction

The DPC-CAW Model

Empirical Application

Conclusion

The DPC-CAW Mode

Empirical Application

Conclusion O

Realized Covariance Models

The increasing availability of high-frequency data has led to a growing attention of the financial econometrics literature to the modeling of time-series of realized covariance matrices.

The DPC-CAW Mode

Empirical Application

Conclusion O

Realized Covariance Models

The increasing availability of high-frequency data has led to a growing attention of the financial econometrics literature to the modeling of time-series of realized covariance matrices.

- Gourieroux, Jasiak and Sufana (JoE, 2009) Wishart Autoregressive Process.
- Jin and Maheu (JoFE, 2012) Wishart-RCOV-A(K) model.
- Jin and Maheu (JoE, 2016) Bayesian semiparametric modeling of RCs
- Noureldin, Shephard and Sheppard (JAE, 2012) HEAVY Models
- Golosnoy, Gribisch and Liesenfeld (JoE, 2012) -Conditional Autoregressive Wishart (CAW) Models.
- Bauwens, Storti and Violante (2012, 2014, 2016) Realized DCC (ReDCC) Models

The DPC-CAW Mode

Empirical Application

Conclusion O

Issues of existing RC Models

- Applications in high-dimensional settings are complicated if not impossible (*curse of dimensionality*)
- Empirical applications therefore do not exceed the 10-dimensional case. (except for the ReDCC specifications)
- Realistic portfolios typically consist of hundreds of assets which makes high-dimensional covariance matrix forecasting an important field of research.

The DPC-CAW Mode

Empirical Application

Conclusion O

Our Contribution

- We propose the Dynamic Principal Component (DPC) CAW model for time-series of high-dimensional realized covariance measures, based on the DPC-GARCH model of Aielli and Caporin (2015)
- Bias and possible inconsistency of a multistep estimation procedure (similar to multistep DCC-GARCH estimation) assessed in an extensive simulation experiment.
- Forecasting ability assessed via the Model Confidence Set (MCS) of Hansen et al. (2011).
- In-sample fit for various model-order settings examined via the BIC information criterion.

The DPC-CAW Mode

Empirical Application

Conclusion 0

Realized Covariances Measures

Realized covariance matrix:

$$RC_{t} = \sum_{j=1}^{m} r_{j,t} r_{j,t}^{\prime},$$
(1)

where $r_{j,t} = y((t-1) + j/m) - y((t-1) + (j-1)/m)$ is the j'th intraday return vector on day t.

The DPC-CAW Mode

ŀ

Empirical Application

Conclusion 0

Realized Covariances Measures

Realized covariance matrix:

$$RC_t = \sum_{j=1}^m r_{j,t} r'_{j,t},$$
 (1)

where $r_{j,t} = y((t-1) + j/m) - y((t-1) + (j-1)/m)$ is the j'th intraday return vector on day t.

- *RC_t* is a well-known consistent nonparametric ex-post estimate of the 'true' integrated covariance matrix.
- If the data contains microstructure noise, jumps or non-synchronous trading, several alternatives, such as the multivariate realized kernel of Barndorff-Nielsen et al. (2011) can be employed.

The DPC-CAW Model •000000000 Empirical Application

Conclusion O

DPC-CAW Specification Overview

CAW distributional assumption:

$$R_t|\mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, S_t/\nu), \quad \Rightarrow E[R_t|\mathcal{F}_{t-1}] = S_t \tag{2}$$

DPC scale matrix spectral decomposition:

$$S_t = L_t D_t L_t' \tag{3}$$

Eigenvector process:

$$Q_{t} = (1 - a - b) LDL' + a R_{t-1} + b Q_{t-1}, \qquad (4)$$

$$Q_{t} = L_{t} G_{t} L_{t}' \qquad (5)$$

Eigenvalue process:

$$\mathbf{d}_{i,t} = (1 - \alpha_i - \beta_i)\mathbf{d}_i + \alpha_i \left(\mathbf{e}'_i \mathbf{L}'_t \mathbf{R}_t \mathbf{L}_t \mathbf{e}_i\right) + \beta_i \mathbf{d}_{i,t-1}$$
(6)

The DPC-CAW Model

Empirical Application

Conclusion O

The Conditional Autoregressive Wishart (CAW) Framework

$R_t | \mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, S_t / \nu)$

- The realized covariance measure R_t is assumed to follow a central Wishart distribution with $\nu > n$ degrees of freedom, and symmetric, positive definite $n \times n$ scale matrix S_t/ν .
- S_t can follow any kind of dynamic autoregressive specification for symmetric, p.d. matrices.

The DPC-CAW Model

Empirical Application

Conclusion O

Scale Matrix S_t

 S_t is defined by an eigenvector (L_t) and an eigenvalue (D_t) process.

 $S_t = L_t D_t L'_t$

- $D_t = \text{diag}(d_{1,t}, d_{2,t}, \dots, d_{n,t})$ are the eigenvalues; the columns of L_t are the corresponding orthonormal eigenvectors.
- Dynamic extension of the prominent orthogonal GARCH (OGARCH) model of Alexander (2001).

The DPC-CAW Model

Empirical Application

Conclusion 0

Eigenvector Process

The auxiliary process is defined as a scalar BEKK recursion for realized covariance measures.

$$Q_t = (1 - a - b) S + a R_{t-1} + b Q_{t-1},$$

$$Q_t = L_t G_t L'_t.$$

• The scalars *a* and *b* and the intercept matrix *S* are parameters to be estimated.

Assumption 1

The eigenvalues in a spectral decomposition are arranged in strictly decreasing order.

Assumption 2

 $0 \leq a, \ 0 \leq b, \ a+b < 1; \ S$ and Q_0 are positive definite.

The DPC-CAW Model

Empirical Application

Conclusion O

Eigenvalue Process

The eigenvalues $d_{i,t}$ are assumed to follow n independent GARCH-type recursions:

$$d_{i,t} = (1 - \alpha_i - \beta_i)d_i + \alpha_i g_{i,t-1} + \beta_i d_{i,t-1}, \qquad i = 1 \dots n$$

where $g_{i,t} = e'_i L'_t R_t L_t e_i$ and e_i is a vector of zeros with a one on the i'th position.

- d_i are the eigenvalues of the intercept matrix S = LDL' of the eigenvector process.
- $g_{i,t}$ is the *i*'th diagonal element of the random matrix $L'_t R_t L_t$. $g_{i,t} | \mathcal{F}_{t-1} \sim \operatorname{Gamma}(\nu/2, 2d_{i,t}/\nu)$. (7)

Assumption 3

 $0 \leq \alpha_i, \ 0 \leq \beta_i, \ \alpha_i + \beta_i < 1, \ 0 < d_{0,i} \ \forall i.$

The DPC-CAW Model

Empirical Application

Conclusion O

Properties

$$E[g_{i,t}|\mathcal{F}_{t-1}] = E[e_i' L_t' R_t L_t e_i | \mathcal{F}_{t-1}] = e_i' L_t' S_t L_t e_i$$

= $e_i' L_t' L_t D_t L_t' L_t e_i = e_i' D_t e_i$
= $d_{i,t}.$ (8)

$$E[d_{i,t}] = (1 - \alpha_i - \beta_i)d_i + \alpha_i \ E[g_{i,t-1}] + \beta_i \ E[d_{i,t-1}]$$

= $(1 - \alpha_i - \beta_i)d_i + \alpha_i \ E[E[g_{i,t}|\mathcal{F}_{t-1}]] + \beta_i \ E[d_{i,t-1}]$
= $(1 - \alpha_i - \beta_i)d_i + \alpha_i \ E[d_{i,t-1}] + \beta_i \ E[d_{i,t-1}]$
 $\Rightarrow E[d_{i,t}] = d_i.$ (9)

Since the d_i are arranged in decreasing order (Assumption 1):

$$\Rightarrow E[d_{1,t}] > E[d_{2,t}] > \ldots > E[d_{n,t}].$$
⁽¹⁰⁾

The DPC-CAW Model

Empirical Application

Conclusion O

DPC-CAW Specification Overview

CAW distributional assumption:

$$R_t | \mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, S_t / \nu), \quad \Rightarrow E[R_t | \mathcal{F}_{t-1}] = S_t$$

DPC scale matrix spectral decomposition:

 $S_t = L_t D_t L'_t$

Eigenvector process:

$$Q_t = (1 - a - b) LDL' + a R_{t-1} + b Q_{t-1},$$

$$Q_t = L_t G_t L'_t$$

Eigenvalue process:

$$\mathbf{d}_{i,t} = (1 - \alpha_i - \beta_i)\mathbf{d}_i + \alpha_i \left(\mathbf{e}'_i \mathbf{L}'_t \mathbf{R}_t \mathbf{L}_t \mathbf{e}_i\right) + \beta_i \mathbf{d}_{i,t-1}$$

The DPC-CAW Model

Empirical Application

Conclusion 0

Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

$$\mathcal{L}^{*}(\psi) = \sum_{t=1}^{T} -\frac{1}{2} \left[\ln |S_{t}(\psi)| + \operatorname{tr} \left(S_{t}(\psi)^{-1} R_{t} \right) \right], \qquad (11)$$

where $\psi = (vech(S)', a, b, \{\alpha_i, \beta_i\}_{i=1}^n)'$ summarizes the parameters for the Q_t and $d_{i,t}$ recursions.

The DPC-CAW Model

Empirical Application

Conclusion O

Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

$$\mathcal{L}^{*}(\psi) = \sum_{t=1}^{T} -\frac{1}{2} \left[\ln |S_{t}(\psi)| + \operatorname{tr} \left(S_{t}(\psi)^{-1} R_{t} \right) \right], \qquad (11)$$

where $\psi = (vech(S)', a, b, \{\alpha_i, \beta_i\}_{i=1}^n)'$ summarizes the parameters for the Q_t and $d_{i,t}$ recursions.

• The parameters of the actual likelihood function are ψ and ν but ν can be treated as nuisance parameter due to its irrelevance in the realized covariance matrix forecast.

The DPC-CAW Model

Empirical Application

Conclusion O

Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

$$\mathcal{L}^{*}(\psi) = \sum_{t=1}^{T} -\frac{1}{2} \left[\ln |S_{t}(\psi)| + \operatorname{tr} \left(S_{t}(\psi)^{-1} R_{t} \right) \right], \quad (11)$$

where $\psi = (vech(S)', a, b, \{\alpha_i, \beta_i\}_{i=1}^n)'$ summarizes the parameters for the Q_t and $d_{i,t}$ recursions.

- The parameters of the actual likelihood function are ψ and ν but ν can be treated as nuisance parameter due to its irrelevance in the realized covariance matrix forecast.
- The score vector is a martingale difference sequence, which implies the quasi-likelihood interpretation.

The DPC-CAW Model

Empirical Application

Conclusion O

Quasi-Likelihood Function

The quasi-likelihood (QL) function obtains as:

$$\mathcal{L}^{*}(\psi) = \sum_{t=1}^{T} -\frac{1}{2} \left[\ln |S_{t}(\psi)| + \operatorname{tr} \left(S_{t}(\psi)^{-1} R_{t} \right) \right], \quad (11)$$

where $\psi = (vech(S)', a, b, \{\alpha_i, \beta_i\}_{i=1}^n)'$ summarizes the parameters for the Q_t and $d_{i,t}$ recursions.

- The parameters of the actual likelihood function are ψ and ν but ν can be treated as nuisance parameter due to its irrelevance in the realized covariance matrix forecast.
- The score vector is a martingale difference sequence, which implies the quasi-likelihood interpretation.
- $\mathcal{L}^*(\psi)$ is also the QL function of MGARCH models.

The DPC-CAW Model

Empirical Application

Conclusion O

Three-Step Estimation - The DPC estimator

The DPC-CAW Model

Empirical Application

Conclusion O

Three-Step Estimation - The DPC estimator

1. Estimate
$$S = LDL'$$
 via $\hat{S} = T^{-1} \sum_{t=1}^{T} R_t$;

Three-Step Estimation - The DPC estimator

- 1. Estimate S = LDL' via $\hat{S} = T^{-1} \sum_{t=1}^{T} R_t$;
- 2. Conditional on step 1. estimate (a, b)' by fitting a scalar CAW model to $\{R_t\}$, essentially assuming $R_t | \mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, Q_t/\nu)$, with $S \stackrel{!}{=} \hat{S}$. Recover \hat{Q}_t to calculate $\hat{g}_{i,t}$ for i = 1, ..., n;

Three-Step Estimation - The DPC estimator

- 1. Estimate S = LDL' via $\hat{S} = T^{-1} \sum_{t=1}^{T} R_t$;
- 2. Conditional on step 1. estimate (a, b)' by fitting a scalar CAW model to $\{R_t\}$, essentially assuming $R_t | \mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, Q_t/\nu)$, with $S \stackrel{!}{=} \hat{S}$. Recover \hat{Q}_t to calculate $\hat{g}_{i,t}$ for i = 1, ..., n;
- Conditional on 1. and 2. estimate {α_i, β_i}ⁿ_{i=1} via univariate QML based on Eqs. (6) and (7) separately ∀i.

Empirical Application

Conclusion O

Small Sample Properties of the DPC Estimator

The simulation experiment shows:

• Low to moderate biases in low ARCH / low persistence environments.

Small Sample Properties of the DPC Estimator

The simulation experiment shows:

- Low to moderate biases in low ARCH / low persistence environments.
- In high ARCH / high persistence environments distortions occur which mainly affect the eigenvalues d_i for i > 3. These eigenvalues are rather low in absolute value.

Small Sample Properties of the DPC Estimator

The simulation experiment shows:

- Low to moderate biases in low ARCH / low persistence environments.
- In high ARCH / high persistence environments distortions occur which mainly affect the eigenvalues d_i for i > 3. These eigenvalues are rather low in absolute value.
- Hence biases are not expected to significantly affect the forecasting performance of the DPC-CAW model.

The DPC-CAW Mode

Empirical Application •00000000 Conclusion O

Empirical Application - Data

- 100 stocks selected by liquidity from the S&P 500
- Realized covariance measures computed from one-minute intraday asset returns by the microstructure-noise and jump robust multivariate realized kernel method of Barndorff-Nielsen at al. (2011)
- The (co)variance processes are highly persistent, skewed to the right, leptokurtic and tend to move parallel to each other.
- January 1, 2002 to December 31, 2014, covering 3271 trading days

-

The DPC-CAW Mode

Empirical Application

Conclusion 0

Estimation Results - BIC

		Order of eigenvector process							
		(1,0)	(1, 1)	(2,1)	(1,2)	(2,2)	(3,2)	(2,3)	(3,3)
SSS	(1, 0)	-2.5515	-2.7671	-2.0818	-2.4645	-2.0505	-2.0298	-2.0460	-2.0998
	(1, 1)	-2.6289	-2.8342	-2.1779	-2.5363	-2.1531	-2.1402	-2.1502	-2.1892
	(2, 1)	-2.6287	-2.8340	-2.1778	-2.5361	-2.1531	-2.1404	-2.1503	-2.1890
	(1,2)	-2.6304	-2.8361	-2.1793	-2.5377	-2.1546	-2.1418	-2.1517	-2.1905
õ	(2,2)	-2.6303	-2.8360	-2.1793	-2.5376	-2.1546	-2.1420	-2.1518	-2.1904
Order of eigenvalue pr	(3,2)	-2.6301	-2.8358	-2.1791	-2.5374	-2.1544	-2.1418	-2.1516	-2.1902
	(2,3)	-2.6311	-2.8371	-2.1801	-2.5384	-2.1553	-2.1428	-2.1525	-2.1911
	(3,3)	-2.6309	-2.8370	-2.1799	-2.5382	-2.1552	-2.1426	-2.1524	-2.1909
	(4,3)	-2.6308	-2.8368	-2.1798	-2.5380	-2.1550	-2.1425	-2.1522	-2.1908
	(3,4)	-2.6314	-2.8374	-2.1801	-2.5384	-2.1554	-2.1428	-2.1526	-2.1911
	(4,4)	-2.6313	-2.8372	-2.1800	-2.5383	-2.1553	-2.1427	-2.1524	-2.1910
	(5,4)	-2.6312	-2.8371	-2.1798	-2.5381	-2.1551	-2.1426	-2.1523	-2.1908
	(4,5)	-2.6313	-2.8373	-2.1800	-2.5382	-2.1553	-2.1428	-2.1525	-2.1910
	(5,5)	-2.6312	-2.8372	-2.1799	-2.5381	-2.1552	-2.1426	-2.1524	-2.1908
	HAR	-2.6280	-2.8341	-2.1773	-2.5357	-2.1525	-2.1397	-2.1497	-2.1883

Table: BIC information criteria for various lag-order constellations. BIC values: $\times 10e7$. Models are estimated using the 3-step estimation approach. The BIC is evaluated at the full (one-step) likelihood.

The DPC-CAW Mode

Empirical Application

Conclusion 0

Estimation Results - DPC-CAW(1,1)-(3,4)

	Eiger	value Pro	cess					
	$\alpha_{i,1}$	$\alpha_{i,2}$	$\alpha_{i,3}$	$\beta_{i,1}$	$\beta_{i,2}$	$\beta_{i,3}$	$\beta_{i,4}$	$\sum_{\ell=1}^{p} \alpha_{i,\ell} + \sum_{\ell=1}^{q} \beta_{i,\ell}$
Median	0.311	0.074	0.000	0.132	0.068	0.135	0.135	0.978
Min.	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.947
Max.	0.492	0.180	0.116	0.519	0.348	0.373	0.378	0.987
	Eigen	vector Pro	cess					
	а	Ь	a+b					
	0.035	0.962	0.997					

Table: Summary of parameter estimates obtained by the DPC estimator for the 100-dimensional data-set described in Section $\ref{eq:table}$ and the BIC selected model order (3,4)-(1,1).

The DPC-CAW Mode

Empirical Application

Conclusion

Estimation Diagnostics - DPC-CAW(1,1)-(3,4)

Figure: Realized (co)variance plots and sample autocorrelation functions (ACFs). Left panel: Sample of realized variances and covariances. Middle panel: Sample ACFs of realized (co)variances with 95% confidence bounds. Right panel: Sample ACFs and 95% confidence bounds of standardized Pearson residuals obtained from the BIC selected DPC-CAW(3,4)-(1,1)

The DPC-CAW Mode

Empirical Application

Conclusion O

Forecasting Evaluation

$$L(\hat{X}, X) = \operatorname{vech}(\hat{X} - X)' \operatorname{vech}(\hat{X} - X)$$

(i) MSE of predicted covariance matrix: $L(\hat{R}_t, R_t)$;

The DPC-CAW Mode

Empirical Application

Conclusion O

Forecasting Evaluation

$$\begin{split} L(\hat{X}, X) &= \operatorname{vech}(\hat{X} - X)' \operatorname{vech}(\hat{X} - X) \\ (i) & \text{MSE of predicted covariance matrix: } L(\hat{R}_t, R_t); \\ (ii) & \text{MSE of predicted variances: } (\operatorname{diag}(\hat{R}_t - R_t))' (\operatorname{diag}(\hat{R}_t - R_t)); \end{split}$$

The DPC-CAW Mode

Empirical Application

Conclusion O

Forecasting Evaluation

$$\begin{split} L(\hat{X}, X) &= \operatorname{vech}(\hat{X} - X)' \operatorname{vech}(\hat{X} - X) \\ \text{(i) MSE of predicted covariance matrix: } L(\hat{R}_t, R_t); \\ \text{(ii) MSE of predicted variances: } (\operatorname{diag}(\hat{R}_t - R_t))' (\operatorname{diag}(\hat{R}_t - R_t)); \\ \text{(iii) MSE of predicted correlation matrix: } L(\hat{\rho}_t, \rho_t); \end{split}$$

The DPC-CAW Mode

Empirical Application

Conclusion 0

Forecasting Evaluation

Loss Functions:

$$L(\hat{X},X) = \operatorname{vech}(\hat{X}-X)' \operatorname{vech}(\hat{X}-X)$$

- (i) MSE of predicted covariance matrix: $L(\hat{R}_t, R_t)$;
- (ii) MSE of predicted variances: $(\operatorname{diag}(\hat{R}_t R_t))'(\operatorname{diag}(\hat{R}_t R_t));$

(iii) MSE of predicted correlation matrix: $L(\hat{\rho_t}, \rho_t)$;

(iv) Variance of predicted global minimum variance portfolio (GMVP): V_{GMPV,t};

The DPC-CAW Mode

Empirical Application

Conclusion O

Forecasting Evaluation

$$L(\hat{X},X) = \operatorname{vech}(\hat{X}-X)' \operatorname{vech}(\hat{X}-X)$$

- (i) MSE of predicted covariance matrix: $L(\hat{R}_t, R_t)$;
- (ii) MSE of predicted variances: $(\operatorname{diag}(\hat{R}_t R_t))'(\operatorname{diag}(\hat{R}_t R_t));$
- (iii) MSE of predicted correlation matrix: $L(\hat{\rho_t}, \rho_t)$;
- (iv) Variance of predicted global minimum variance portfolio (GMVP): V_{GMPV,t};

(v) QLIKE:
$$QLIKE_t = \ln |\hat{R}_t| + vec \left(\hat{R}_t^{-1}R_t\right)' \iota.$$

The DPC-CAW Mode

Empirical Application

Conclusion 0

Forecasting Evaluation

Loss Functions:

$$L(\hat{X},X) = \operatorname{vech}(\hat{X}-X)' \operatorname{vech}(\hat{X}-X)$$

- (i) MSE of predicted covariance matrix: $L(\hat{R}_t, R_t)$;
- (ii) MSE of predicted variances: $(\operatorname{diag}(\hat{R}_t R_t))'(\operatorname{diag}(\hat{R}_t R_t));$
- (iii) MSE of predicted correlation matrix: $L(\hat{\rho_t}, \rho_t)$;
- (iv) Variance of predicted global minimum variance portfolio (GMVP): V_{GMPV,t};

(v) QLIKE:
$$QLIKE_t = \ln |\hat{R}_t| + vec \left(\hat{R}_t^{-1}R_t\right)' \iota.$$

The Model Confidence Set (MCS) by Hansen et al. (2011) contains the best model at confidence level $1 - \alpha$. Below we choose $\alpha = 0.1$.

The DPC-CAW Mode

Empirical Application

Conclusion 0

Competing Forecasting Models - Scalar Re-DCC

$$R_t | \mathcal{F}_{t-1} \sim \mathcal{W}_n(\nu, S_t/\nu), \qquad (12)$$

$$S_t = V_t \rho_t V_t, \qquad V_t = \operatorname{diag}(\sqrt{s_{11,t}}, \sqrt{s_{22,t}}, \dots, \sqrt{s_{nn,t}})$$
(13)

where ρ_t is the correlation matrix implied by S_t .

$$s_{ii,t} = \gamma_i + \sum_{k=1}^{p} \alpha_{k,i} r_{ii,t-k} + \sum_{l=1}^{q} \beta_{k,i} s_{ii,t-l}.$$
 (14)

$$\rho_t = (1 - a - b)\bar{\rho} + aP_{t-1} + b\rho_{t-1}, \qquad (15)$$

where P_t is the realized correlation matrix

$$P_t = \{ diag(R_t) \}^{-1/2} R_t \{ diag(R_t) \}^{-1/2}.$$
 (16)

Three-step estimation similar to the DPC estimator: $\bar{\rho}$ is estimated by the sample mean of realized correlation measures ("correlation targeting"). The DPC-CAW Mode

Empirical Application

Conclusion 0

Competing Forecasting Models - CCC, O-CAW, EMWA

- CCC-CAW model (Re-DCC specification where a = b = 0).
- OGARCH-CAW (DPC-CAW specification where a = b = 0).
- Exponentially weighted moving average (EWMA) specification

$$E[R_t|\mathcal{F}_{t-1}] = (1-\lambda)R_{t-1} + \lambda E[R_{t-1}|\mathcal{F}_{t-2}], \quad (17)$$

with preset smoothing parameter $\lambda = 0.94$ (see J.P. Morgan, 1996).

• DPC-CAW_{0f} model (restricting $\alpha_i = \alpha$ and $\beta_i = \beta$ $\forall i = 1, ..., n$ in the DPC-CAW eigenvalue recursions).

The DPC-CAW Model

Empirical Application

Conclusion O

Forecasting - Volatile Market

Volatile Market: 01.01.2009 – 31.12.2011								
Mo del	(p,q)	Cov matrix	Var	Corr	$\begin{array}{c} GMVP \\ \times 10^2 \end{array}$	QLIKE		
DPC-CAW	(1,1)	32289	8322	195.9	37.86	150.8		
	(2,2)	32036	8296	195.5	37.74	150.4		
	(3,3)	31943	8316	195.1	37.7	149.8		
DPC-CAW _{0f}	(1,1)	32596	8511	193.5	37.76	147.0		
	(2,2)	32262	8466	193.2	37.67	146.7		
	(3,3)	32063	8450	192.9	37.65	146.2		
Re-DCC-CAW	(1,1)	32346	8222	229.1	39.72	201.5		
	(2,2)	32196	8155	228.8	39.59	200.4		
	(3,3)	32335	8239	228.6	39.53	199.3		
O-CAW	(1,1)	38834	10116	211.6	49.99	148.3		
	(2,2)	38626	10112	211.2	49.97	148		
	(3,3)	38528	10140	211	49.99	147.5		
CCC-CAW	(1,1)	34359	8222	273.2	41.62	225.2		
	(2,2)	34223	8155	273.2	41.54	224.7		
	(3,3)	34371	8239	273.2	41.51	223.9		
EWMA		37178	9823	204.9	38.9	162.9		

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90% model confidence set includes the respective model.

The DPC-CAW Model

Empirical Application

Conclusion O

Forecasting - Calm Market

Calm Market: 01.01.2012 - 31.12.2014								
Model	(p,q)	Cov	Var	Corr	GMVP	QLIKE		
		matrix			$ imes 10^2$			
DPC-CAW	(1, 1)	1586	540.4	226.2	15.48	73.96		
	(2,2)	1580	539.7	226.3	15.49	74.09		
	(3,3)	1578	540.1	226.4	15.48	74.32		
DPC-CAW _{0f}	(1, 1)	1600	542.4	225.4	15.48	66.76		
	(2,2)	1590	540.7	225.5	15.49	66.99		
	(3,3)	1585	540.2	225.4	15.48	67.05		
Re-DCC-CAW	(1, 1)	1742	597.8	242.8	16.6	94.67		
	(2,2)	1732	593.3	242.7	16.59	94.37		
	(3,3)	1729	592.8	242.6	16.59	94.10		
O-CAW	(1, 1)	1756	609.4	243.9	20.08	110.16		
	(2,2)	1750	608.2	244.2	20.08	110.43		
	(3,3)	1749	607.6	244.5	20.08	110.59		
CCC-CAW	(1, 1)	1840	597.8	265.3	18.11	96.27		
	(2,2)	1828	593.3	265.3	18.12	96.18		
	(3,3)	1824	592.8	265.3	18.16	96.23		
EWMA	. ,	1715	556.3	239.8	15.74	82.57		

Table: Mean daily forecasting losses. Grey shaded values indicate that the 90% model confidence set includes the respective model.

The DPC-CAW Mode

Empirical Application

Conclusion

Conclusion

• An extensive simulation experiment confirms satisfying finite sample properties of the three-step estimation approach.

The DPC-CAW Mode

Empirical Application

Conclusion

Conclusion

- An extensive simulation experiment confirms satisfying finite sample properties of the three-step estimation approach.
- The DPC-CAW model has particularly good forecasting properties and outperforms its competitors including DCC-CAW specifications for realized covariance measures.

The DPC-CAW Mode

Empirical Application

Conclusion

Conclusion

- An extensive simulation experiment confirms satisfying finite sample properties of the three-step estimation approach.
- The DPC-CAW model has particularly good forecasting properties and outperforms its competitors including DCC-CAW specifications for realized covariance measures.
- We provide an empirical application to realized covariance measures for 100 assets traded at the NYSE matrices.