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Integrated Covariance - The Variable of Interest

Prices are assumed to be a semimartingale

ps = µsds + AsdWs , (1)

where ps (k × 1) is the vector of log prices at time s, µs is the

instantaneous drift, Σs = AsA′s is the instantaneous covariance of

returns, and Ws is a standard k-variate Wiener process.

We are interested in the integrated covariance over [day] t,

ICovt =

∫
t

Σsds. (2)
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Variables Used and Objective

We use

1. the simplest estimator of integrated covariance, the realized

covariance matrix

RCt
(k×k)

=
m∑
j=1

rj,tr
′
j,t , (3)

where rj,t is the j ’th intraday return vector on day t and

2. the vector of period t returns rt
(k×1)

,

in a model with the aim of dynamically modelling and forecasting

integrated covariance.
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High-frEquency-bAsed VolatilitY (HEAVY) Models1,2

Heavy models are made up of the system{
Cov(rt |Ft−1)

E[RCt |Ft−1]

}
, t = 2, . . . ,T

under the assumption that rt and RCt are independent conditional on

the joint dynamic parameter vector θt and on Ft−1, such that the

period-t log-likelihood contribution obtains as

Lt(rt ,RCt |θt ,Ft−1;β,γ) = log fr(rt |θt ,Ft−1;β)+log fRC(RCt |θt ,Ft−1;γ),

(4)

where β and γ represent the static parameters.

1Shephard and Sheppard (JAE, 2010)
2Noureldin, Shephard and Sheppard (JAE, 2012)
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Generalized Autoregressive Score (GAS) Models1

A class of observation-driven time series models. The mechanism to

update the dynamic parameters over time is the scaled score of the

likelihood function, w.r.t. these parameters, Sθ
t .

For example, if we assume that RCt |Ft−1
iid∼ Wishart(Σt/ν, ν), then the

updating equation for Σt could be

Σt = AA′ + B Σt−1 B′ + C SΣ
t−1 C, (5)

where A-C are full k by k matrices and SΣ
t = Dt∇tDt , with

∇t = ∂ log(pdfWishart)
∂Σt

and the (time varying) scale matrix Dt .

1Creal, Koopman and Lucas (JAE, 2013)
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Generalized Autoregressive Score (GAS) Models1

� The score defines a steepest ascent direction for improving the

model’s local fit in terms of the likelihood at time t given the

current position of the parameters. This provides the natural

direction for updating the parameter.

� The score depends on the complete density, and not only on the

first- or second-order moments of the observations, which

distinguishes the GAS framework from most of the other

observation-driven approaches in the literature.

� By exploiting the full density structure, the GAS model introduces

new transformations of the data that can be used to update the

time-varying parameters.

1Creal, Koopman and Lucas (JAE, 2013)
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Existing HEAVY GAS Models

Gorgi, Hansen, Janus and Koopman (JFEconometrics, 2019):

rt ∼ N(0,ΛΣtΛ), (6)

RCt ∼W(Σt , ν1) (7)

Σt = AA′ + B Σt−1 B′ + C SΣ
t−1 C′, (8)

where A,B,C are full k by k matrices, Λ is a diagonal matrix, Σ is a

symmetric p.d. parameter matrix, ν1 is a scalar parameter.

Opschoor, Janus, Lucas and Van Dijk (JBES, 2018):

rt ∼ t(0,Σt , ν0), (9)

RCt ∼ matrix-F(Σt , ν1, ν2) (10)

Σt = AA′ + bΣt−1 + cSΣ
t−1, (11)

where a and b are scalars and ν0 and ν2 are scalar parameters. The

t-distribution accounts for the fat tails in financial returns. Realized

covariance matrices also exhibit fat-tails (much probability mass on

”large“ covariance matrices), which the matrix-F can account for.
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The HEAVY GAS skew-t noncentral-F Model

rt ∼ skew-t(0,ΛΣtΛ,αt , ν0), (12)

RCt ∼ noncentral-F(Σt ,Ωt , ν1, ν2) (13)

Σt = AA′ + B Σt−1 B′ + C SΣ
t−1 C′ (14)

Ωt = DD′ + E Ωt−1 E′ + F SΩ
t−1 F′ (15)

αt = g + Hαt−1 + J Sα
t−1, (16)

Nests Grigori et al., Opschoor et al. (with appropriate scaling of the

score).
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Multivariate Skew-t Distribution

Motivated by the stylized fact that large negative returns are more likely than

large positive ones, i.e. skewness.

Probability density function:

fr(rt |Σt ,αt , ν0;Ft−1) =

2fTν0
(rt |Σt ;Ft−1)FTν0+p

(
αt
>rt

(ν0 − 2 + rt>Σt
−1rt)1/2

√
ν0 + p

)
, (17)

where the FTν0
(·) denotes the c.d.f. of the standard univariate t-distribution

with ν0 degrees of freedom and fTν0
(·) is density of the (standardized)

multivariate central t distribution with ν0 degrees of freedom. The vector α

contains the skewness parameters.

Cov(rt) =
ν0

ν0 − 2
Σt −

ν0
π

(
Γ
(
ν0−1

2

)
Γ
(
ν0
2

) )2
Σtαtαt

>Σt

1 + αt
>Σtαt

, ν0 > 2 . (18)
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Matrix-Variate Noncentral F Distribution

Probability density function:

fRC (RCt |Σt ,Ωt ,Ft−1; ν1, ν2)

=
1

Bp
( ν1

2
, ν2

2

) ∣∣∣∣ ν1

ν2 − p − 1
Σt
−1

∣∣∣∣ν1/2 |RCt |(ν1−p−1)/2∣∣∣I + ν1
ν2−p−1

Σt
−1RCt

∣∣∣(ν1+ν2)/2 etr(−
1
2

Σt
−1Ωt)

× 1F1

(
ν1 + ν2

2
;
ν1

2
;
1

2

ν1

ν2 − p − 1
Σt
−1ΩtΣt

−1RCt [I +
ν1

ν2 − p − 1
Σt
−1RCt ]

−1

)
(19)

where Bp (a, b) denotes the multivariate Beta function and 1F1(a; b; C) is

the matrix variate hypergeometric function.

E[RCt ] = Σt +
1

ν1
Ωt . (20)
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Matrix-Variate Noncentral F Distribution

Figure 1: Static estimation of noncentral matrix-F distribution on subperiods of 500

datapoints each. Ω̂ varies substatially over time, motivating our choice of the

noncentral matrix-F. It seems that, the more volatile the period, the more weight rests

on the Ω/ν1 part of E[RCt ] as opposed to the Σ part. (Recall E[RCt ] = Σt + Ωt/ν1.)
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Matrix-Variate Noncentral F Distribution

Figure 2: HEAVY GAS t noncentral-F model fit.
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Problems and Plans

Problems:

� Parameter optimization is very unstable, highly dependent on

starting values and ”precision“ of matrix-variate hypergeometric

function evaluation.

� The matrix-variate hypergeometric function computing time

explodes increasing ”precision“ and cross-sectional dimension.

� Differentiation of the matrix-variate hypergeometric function wrt

matrix argument is not given in closed form. We use a complicated

approximation for the score.

Plans:

� In-Sample fit comparison to ”restricted models“ using BIC.

� Forecasting experiment.

� Med -/High dimensional application.
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Thank you for your attention!

14


