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Abstract

Realized covariance measures (RCs) are an essential input for assess-

ing the risks of investment allocations. Thus useful to model and fore-

cast them. To this end, a realistic distributional assumption is needed.

In this paper, we compare all probability distributions that have so

far been applied in the academic literature to time-series of RCs. We

derive them in a unified framework based on their stochastic represen-

tations in terms of random lower and upper triangular (Barlett) ma-

trices. These matrices are composed of standard normal distributions

in the off-diagonal elements and χ-distributions on the diagonals. Fur-

thermore, we derive a novel family of probability distributions, which

has a property called tail-homogeneity. This property means that in

crisis periods, i.e. large RCs, our distribution family assumes high de-

pendence between the individual entries of the RCs (“homogeneous

tails”). We show theoretically how the distributions differ from each

other in terms of their tail-behaviour, and in terms of the implied

marginal distributions of their log-determinants (a measure of the size

of the RCs), realized variances, and covariances between the realized

variances. Finally, we show rigorously how the distributions are re-

lated to each other. In the empirical part, we connect the previously

derived theoretical differences to differences in fit and forecasting per-

formance. We show that our novel distribution family achieves the

best fit. Out-of-sample forecasting comparisons further corroborate

the excellent performance of our novel distribution family.
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1 Introduction

The covariance matrix of financial asset returns is an essential object in the finan-

cial econometrics literature because it has direct implications for efficient portfolio

allocation and can be used in risk management and derivative pricing. A realized

covariance matrix (RC) is an accurate and consistent ex-post estimate of the in-

tegrated covariance matrix of financial asset returns over a trading day. It is

constructed from high-frequency data and can be interpreted as making the daily

covariance matrix of the underlying financial asset returns “effectively observable”.

As such, it is advocated to model time-series of RCs directly (see e.g. Andersen

et al. 2001, Andersen et al. 2006, McAleer and Medeiros 2008, Chiriac and Voev

2011). This direct modelling is in contrast to traditional multivariate volatility

models (pioneered by Engle and Kroner 1995 and Engle 2002), which treat the

covariance matrix as latent, and are based on low-frequency daily return data.

In recent years, the increasing availability of high-frequency data has led to an

enormous growth of models designed for RCs. These are often observation-driven

models in which RCs are treated as random matrices with time-varying condi-

tional distributions. While many different models that feature different probabil-

ity distributions have been proposed, the explicit comparison of the theoretical

and empirical properties of these probability distributions has not been the focus

of a study to the best of our knowledge.

This paper aims to fill this gap in the literature. The comparison is important

since choosing a probability distribution that accurately reflects the characteristics

of RC data is crucial. Depending on the assumed distribution, different courses of

action might result for practitioners. For instance, consider an investor who wants

to invest in the predicted global minimum variance portfolio. If she is already

invested in the underlying assets, the covariance matrix forecast almost surely

implies different optimal weights than her current allocation. But should she re-

weight her portfolio, or is her current allocation “within reasonable distance” to

the optimal weights? To answer this question, she must know the probability dis-

tribution of the forecasted covariance matrix, i.e. of the forecasted RC. Adopting

a well-fitting distribution is also in itself an important aim. After all, since em-

pirically, the realized variances (RVs), i.e. the diagonal elements of the RCs, have
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high variance, are fat-tailed, and are right-skewed (Opschoor and Lucas 2022), the

realized covariances (RCOVs) are more often positive than negative, and the RV

of one asset tends to be large if the one of another asset is large (as is true in

our data), it is logical to choose a probability distribution that can reflect these

properties.

We outline the specific contributions of this paper. The first is, that we collate

theoretical knowledge about the different hitherto used probability distributions

into one place and common notation. This uncovers theoretical similarities and

differences among the distributions, which is useful in explaining their differences

in empirical fit and forecasting performance. Second, we derive a new distribution

family, the t-Riesz distribution family, which is based on the t-Wishart distribution

by Sutradhar and Ali (1989). We show that it has desirable theoretical and empir-

ical properties, is closely related to the hitherto suggested distributions, and can

be grounded in a realistic distributional assumption on the intraday return vectors

from which an RC is constructed. Furthermore, we demonstrate that the t-Riesz

distribution family offers a particularly good fit for the RC data. We contribute

further by showing that all distributions, including the t-Riesz distribution family,

can be regarded as belonging to a common overarching family. In this context,

we rigorously show how exactly all distributions are related to each other. Many

of these relations have not been previously derived. In the empirical part of this

paper, we perform fit and forecasting comparisons of the different distributions in

different datasets of time-series of RCs and explain how the theoretical differences

translate into differences in fit and forecasting performance. Finally, other minor

contributions of this paper are the discovery and derivation of another distribution

(the Inverse F -Riesz) and showing that empirically it suffices to consider one of

the two versions of Riesz distributions1.

We now present the literature on probability distributions hitherto applied to

time-series of RCs, citing not their original sources, but the ones that introduced

them to financial econometrics. Probability distributions for RCs must generate

symmetric positive definite random matrices. The first one proposed for RCs was

the Non-Central Wishart in Gourieroux, Jasiak, and Sufana 2009. Their Wishart

Autoregressive process (WAR) can be derived from a continuous-time multivari-

1. Each Riesz-type distribution has two versions.
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ate Ornstein-Uhlenbeck price process. It can be seen as a multivariate extension

of the Cox-Ingersoll-Ross model and is simple to estimate. The model essentially

assumes that the non-centrality matrix varies over time, driven by lagged values of

the RCs, while the scale matrix stays constant. Yu, Li, and Ng (2017) also assume

the Non-Central Wishart distribution. Their model is a generalization of the WAR

model by Gourieroux, Jasiak, and Sufana (2009) (and the CAW model by Golos-

noy, Gribisch, and Liesenfeld (2012) presented below), where both the scale matrix

and the non-centrality matrix depend on the lagged values of the RCs. However,

this model is not applicable to dimensions of, say, more than three assets because

the likelihood computation of the Non-Central Wishart distribution involves the

numerical approximation of the matrix-variate hypergeometric function (see Koev

and Edelman 2006), which is prohibitively slow. Golosnoy, Gribisch, and Liesen-

feld (2012) propose the conditional autoregressive Wishart (CAW) model, which

assumes that the conditional expected value matrix of the Wishart distribution

follows BEKK dynamics (cf. Engle and Kroner 1995 for BEKK dynamics). Gorgi

et al. (2019) also use the Wishart matrix but assume generalized autoregressive

score (GAS) dynamics for the expected value matrix. The Wishart distribution

has been well-studied (see e.g. Gupta and Nagar 2000) and is attractive because

of its relative simplicity. It is a special case of the Non-Central Wishart dis-

tribution where the non-centrality matrix equals the zero matrix. Furthermore,

it can be derived as the sum of outer products of independent and identically

distributed (i.i.d.) normally distributed random vectors and arises naturally in

many areas of statistics. However, the Wishart has the disadvantage of being

a thin-tailed distribution, which is in contrast to the empirically fat-tailed RCs.

Asai and So (2013) and Jin and Maheu (2016) use the Inverse Wishart distribu-

tion in various model frameworks. Jin and Maheu (2016) show that the Inverse

Wishart distribution is better at modelling the conditional density of realized co-

variance matrices than the Wishart distribution. The Inverse Wishart can be

considered fatter-tailed than the Wishart distribution.2 The first large advance-

ment in distributional fit was accomplished by Opschoor et al. (2018) who propose

the matrix-F distribution3 and show that it implies fatter tails for the RVs than

2. See Section 5.3.2
3. From now on we call the matrix-F simply the F distribution.
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previously used distributions. They employ the F distribution in a GAS model

and demonstrate that it significantly outperforms previously proposed (Inverse)

Wishart distribution-based models. Zhou et al. (2019) confirm these results. Re-

cently, Blasques et al. (2021) introduced the Riesz, Inverse Riesz, and F -Riesz

distributions into financial econometrics. These Riesz-type distributions general-

ize, respectively, the Wishart, Inverse Wishart, and F distributions by featuring

degree of freedom (d.o.f.) parameter vectors instead of scalars, thus adding flexibil-

ity. Blasques et al. (2021) propose an efficient algorithm to estimate the Riesz-type

distributions. Furthermore, they show that there is again a large increase in fit

and forecasting ability from the F to the F -Riesz distribution and attribute this to

the fact that the F -Riesz distribution features heterogeneous tails for the realized

variances. Finally, Gribisch and Hartkopf (2022) show that the Riesz distribution

for the standard realized covariance matrix can be derived by assuming a normal

distribution on the intraday return innovations and sorting the assets according to

their liquidity, where the asset with the most zero intraday returns is interpreted

to be least liquid.

We note here that an alternative to modelling the RCs themselves is to transform

them via e.g. the Cholesky decomposition (Chiriac and Voev 2011), the matrix

logarithm (Bauer and Vorkink 2011), the decomposition into realized correlation

matrices and realized variances (Bauwens, Storti, and Violante 2012), or the ma-

trix logarithm of the realized correlation matrix (Archakov and Hansen 2021),

and then model those transformed time-series. Notably, the model of Archakov

and Hansen (2021) is invariant to the ordering of the assets, naturally accommo-

dates positive definiteness of the implied RCs, and the individual elements of the

transformed time-series exhibit much-reduced dependence amongst each other.

The rest of this paper is structured as follows. The next section derives all

probability distributions4 in a unified framework based on their stochastic repre-

sentations, analyzes the distribution’s stochastic properties, shows how the distri-

butions relate to each other, and derives the probability density functions. Section

3 shows how the newly derived t-Riesz distribution family can be derived from a

reasonable low-level assumption on the intraday return vectors (as an alternative

to deriving it from the random triangular matrices). Section 4 introduces time-

4. Excluding the Non-Central Wishart.
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variation in the expected value parameter matrix of the distributions, in Section 5

we discuss estimation and perform the in-sample fit comparison and out-of-sample

forecasting performance analysis of the different distributions, and 6 concludes.

2 Probability Distributions

Let R denote the p× p symmetric positive definite realized covariance matrix of p

asset returns on a given day and assume that it follows a probability distribution

D with support on symmetric positive semidefinite matrices. Later on, we will

add a time index t indicating the day t = 1, . . . , T and write Rt; for now, we opt

for better readability.

All5 hitherto in the literature considered probability distributions for R are

characterized by a p× p positive definite parameter matrix Ω and a distribution-

specific set of degree of freedom (d.o.f.) parameters θD, such that we write

R ∼ D(Ω,θD). (1)

Their characterization in terms of Ω and θD will become apparent by examining

the distributions’ stochastic representations, which we will do next. The stochas-

tic representations are central to this paper since based on them we introduce

the various distributions, analyze their stochastic properties, derive the distribu-

tions’ expected values and probability density functions (p.d.f.s) as well as their

relationships to one another.

2.1 Stochastic Representations

All hitherto in the literature considered probability distributions for R and the

ones newly proposed in this paper can be generated from the p× p random trian-

5. Excluding the Non-Central Wishart. Since it doesn’t fit into the theoretical framework of
this paper, and because the empirical results indicate that other distributions fit much better to
RC data, we exclude the Non-Central Wishart from the theoretical considerations in this paper.
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gular matrices

B =




√
χ2

n1−1+1 0
√
χ2

n2−2+1

. . .

N (0, 1)
√
χ2

np−p+1




and/or

B̄ =




√
χ2

ν1−p+1 N (0, 1)
√
χ2

ν2−p+2

. . .

0
√
χ2

νp−p+p,



,

that is

(B)ij ∼




N (0, 1) for i < j,

χni−i+1 for i = j
(2)

and/or

(B̄)ij ∼




χνi−p+i for i = j,

N (0, 1) for i > j,
(3)

where all random variables inside the matrices are independent of each other.6

We refer to these random matrices as Bartlett matrices since Bartlett (1933) was

the first to show that the Wishart random matrix can be generated from a special

case of those triangular matrices. The corresponding decomposition of the Wishart

random matrix is known in the literature as Barlett decomposition.

The parameters ni and νi are the aforementioned d.o.f. parameters, which we

collect in the p × 1 vectors n = (n1, . . . , np)
⊤ and ν = (ν1, . . . , νp)

⊤. The special

cases of the Bartlett matrices, where for all i, ni = n and νi = ν, we denote

as B and B̄, respectively. That is B and B̄ are governed by d.o.f. parameters n

6. The χn distribution is given in e.g. Walck (2007), Section 8.14.

8



Distribution KD Distribution KD
Wishart (W) BB⊤ Riesz (R) BB⊤

Inv.Wishart (iW) B̄−⊤B̄−1 Inv.Riesz (iR) B̄−⊤B̄−1

t-Wishart (tW) (b̄)−2BB⊤ t-Riesz (tR) (b̄)−2BB⊤

Inv.t-Wishart (itW) (b)2B̄−⊤B̄−1 Inv.t-Riesz (itR) (b)2B̄−⊤B̄−1

F B̄−⊤BB⊤B̄−1 F -Riesz (FR) B̄−⊤BB⊤B̄−1

F BB̄−⊤B̄−1B⊤ Inv.F -Riesz (iFR) BB̄−⊤B̄−1B⊤

Table 1: Stochastic representation kernels KD of all distributions for RCs. The
complete stochastic representations are given by CΩKDC⊤Ω , where CΩ is
the lower Cholesky factor of the p × p symmetric positive definite pa-
rameter matrix Ω = CΩC

⊤
Ω . b and b̄ are χn and χν distributed random

variables, thus can be interpreted as one-dimensional B and B̄, respec-
tively. B (B̄) is the special cases of B (B̄) where for all i, ni = n (νi = ν).

and ν, and B and B̄ are governed by d.o.f. parameter vectors n and ν. Note

that for p = 1, the Bartlett matrices reduce to the random variables χn and χν,

respectively. For the matrix distributions to exist, we must restrict ni > i− 1 and

νi > p − i since otherwise the χ distributions on the main diagonals would not

exist.7

Let D ∈ (W , iW , tW , itW , F,R, iR, tR, itR, FR, iFR) denote the different

probability distributions (see Table 1 for their full names). In Section 2.2 be-

low we will have a closer look at the distributions one by one and analyze their

stochastic properties. The ones in green are the novel distributions derived in

this paper. Assuming that R follows one of the distributions D, its stochastic

representation can be written as

R = CΩKDC⊤Ω , (4)

where KD is a distribution-specific function of one or both of the Bartlett matrices

or their special cases, and CΩ denotes the lower Cholesky factor of symmetric

positive definite parameter matrix Ω. We call KD stochastic representation kernel.

The distribution parameters are thus given by the parameter matrix Ω and the

7. Note that this does not imply the existence of E [R]. For example the Inverse Wishart

distribution is based on
(
B̄B̄⊤

)−1
and its mean only exists if in fact ν > p + 1, whereas the

distribution exists for ν > p− 1.

9



Distribution θD Distribution θD
Wishart n Riesz n

Inv.Wishart ν Inv.Riesz ν

t-Wishart (n, ν)⊤ t-Riesz (n⊤, ν)⊤

Inv.t-Wishart (n, ν)⊤ Inv.t-Riesz (n,ν⊤)⊤

F (n, ν)⊤ F -Riesz (n⊤,ν⊤)⊤

F (n, ν)⊤ Inv.F -Riesz (n⊤,ν⊤)⊤

Table 2: Degree of freedom parameters of distributions for RCs.

d.o.f. parameter(s) in KD (one or two of the set (n, ν,n,ν)). We collect the

distribution-specific d.o.f. parameters in the vector θD. The exact composition of

θD for the different distributions is given in Table 2.8

2.1.1 The Expected Value Matrix Σ

We now standardize the distributions; that is, we characterize them in terms of

their p× p symmetric positive definite expected value matrix

Σ = CC⊤ := E [R] , (5)

instead of in terms ofΩ, whereC is the lower Cholesky factor ofΣ. This standard-

ization allows for a simple two-step estimation strategy, where the O(p2) expected
value matrix Σ is estimated by its obvious method of moments estimator in the

first step and the d.o.f. parameters in a second step. Furthermore, since Σ has

the same interpretation across distributions (unlike Ω), standardization makes

comparisons of the distributions easier. Additionally, the nesting relationships

between the different distributions (see Figure 6 on p. 25) are only valid for the

standardized, i.e. Σ-parameterized, distributions.

We denote the expected value of the stochastic representation kernel by

MD := E [KD] . (6)

8. It is easy to see from Table 1, which d.o.f. parameter(s) characterize each distribution.
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Distribution MD Distribution MD

Wishart In Riesz dg(n)

Inv.Wishart I 1

ν−p−1 Inv.Riesz dg(
◦
ν)

t-Wishart I n

ν−2 t-Riesz dg(n) 1

ν−2
Inv.t-Wishart I n

ν−p−1 Inv.t-Riesz dg(
◦
ν)n

F I n

ν−p−1 F -Riesz dg(
◦
n)

F I n

ν−p−1 Inv.F -Riesz dg(
◦◦
n)

Table 3: Expected values of stochastic representation kernels, MD = E[KD]. For

the definitions of
◦
ν,

◦
n and

◦◦
n, see Theorem 2.1.

Then the stochastic representation of the standardized distributions is

R = CM
− 1

2

D KDM
− 1

2

D C⊤, (7)

with

E[CM
− 1

2

D KDM
− 1

2

D C⊤] = CM
− 1

2

D E [KD]M
− 1

2

D C⊤ = Σ. (8)

This implies that

CΩ = CM
− 1

2

D ⇔ C = CΩM
1
2

D and Ω = CM−1
D C⊤ ⇔ Σ = CΩMDCΩ. (9)

The expectations MD are straightforward to derive by applying Theorem 2.1

(p. 12). They are listed in Table 3. Notice that they are all diagonal matri-

ces, so if all its diagonal elements are non-negative, M−1/2
D is uniquely defined. If

an element is negative while the conditions for the existence of the distributions

are fulfilled, then the expected value Σ does not exist. In this paper, we assume

that the expected value always exists, and we can thus equivalently characterize

the distribution in terms of Σ and write

R ∼ D(Σ,θD). (10)
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Theorem 2.1. Let B and B̄ be defined as in equations (2) and (3). Then

E[BB⊤] = dg(n), (Dı́az-Garćıa 2013)

E[
(
B̄B̄⊤

)−1
] = dg(

◦
ν), (Louati and Masmoudi 2015)

E[B̄−⊤BB⊤B̄−1] = dg(
◦
n), (Blasques et al. 2021) and

E[B
(
B̄B̄⊤

)−1
B⊤] = dg(

◦◦
n),

with the p× 1 vectorsa

n = (n1, n2, . . . , np)
⊤
,

◦
ν = (

◦
ν1,

◦
ν2, . . . ,

◦
νp)
⊤,

◦
νi=





1

νi−p−1
, for i = 1

1

νi−p+i−2

(
1 +

∑i−1
j=1

◦
νj

)
for i = 2, . . . , p,

(11)

◦
n = (

◦
n1,

◦
n2, . . . ,

◦
np)

⊤,

◦
ni=





n1

ν1−p−1
, for i = 1

1

νi−p+i−2

(
ni +

∑i−1
j=1

◦
nj

)
for i = 2, . . . , p

and (12)

◦◦
n = (

◦◦
n1,

◦◦
n2, . . . ,

◦◦
np)

⊤

◦◦
ni=




n1

◦
ν1, for i = 1

∑i−1
j=1

◦
νj +(ni − i+ 1)

◦
νi, for i = 2, . . . , p.

(13)

Proof in Appendix.

a. If ∀i, ni = n, νi = ν then
◦
νi= (ν − p − 1)−1 and

◦
ni=

◦◦
ni= n(ν − p − 1)−1. For p = 1 we

obtain the expectations of a χ2
n, an inverse χ2

ν , and the χ2
n/χ

2
ν ratio distribution.

2.2 The Individual Distributions

To understand the various distributions’ stochastic properties, we now analyze

and compare their stochastic representation kernels (Table 1). There are many

properties amongst which we could compare the distributions. We focus on the

marginal distribution of the RVs, i.e. the diagonal elements, since they are of

special interest, and on the dependence amongst the individual elements of the
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stochastic representation kernels.

We start with the Wishart distribution (W), which we treat as our baseline

case,

BB⊤.

The diagonal elements of the stochastic representation kernel of the Wishart follow

independent χ2
n-distributions, which is easy to see by noticing that

(BB⊤)ii =
p∑

k=1

(B)ik(B)ki =
p∑

k=1

(B)2ik =
i∑

k=1

(B)2ik, (14)

which is a sum of a χ2
n−i+1 and i − 1 independent (N(0, 1))2 random variables,

which yields a χ2
n random variable. The Riesz distribution (R),

BB⊤,

adds flexibility by allowing for different d.o.f. parameters of the χ-distributions on

the main diagonal of the Bartlett matrix, which leads to the diagonal elements

being distributed as (BB⊤)ii
iid∼ χ2

ni
.

The t-Wishart (tW) has stochastic representation kernel

(b̄)−2BB⊤,

where the term (b̄)−2 corresponds to an inverse χ2
ν random variable. It is immedi-

ately obvious, that the scalar multiplication of every element in BB⊤ by (b̄)−2 cre-

ates much more dependence among the individual elements than for the Wishart

distribution. In particular, the diagonal elements of the stochastic representation

kernel are now dependent random variables following a ratio distribution ∼ χ2
n/χ

2
ν,

where the χ2
ν random variable is common across all diagonal elements and the χ2

n

random variable is specific to the index i. This implies that if one diagonal ele-

ment has a large realization, the others are likely to have a large realization as

well. Again, the Riesz version of the distribution, that is the t-Riesz (tR) with
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Figure 1: Marginal p.d.f.s of the first RV (R1 1) implied by the Riesz, t-Riesz,
and F -Riesz distributions for a two-dimensional RC with the parameter
setting Σ = I2, n = (15, 30)⊤, and with three different settings for the
d.o.f. parameters, ν = 4, 5, 10 (t-Riesz) and ν = (4, 4)⊤, (5, 5)⊤, (10, 10)⊤

(F -Riesz).

stochastic representation kernel

(b̄)−2BB⊤,

adds flexibility by allowing for the χ2
ni
random variables to have different d.o.f. pa-

rameters.

The F distribution has stochastic representation kernel

B̄−⊤BB⊤B̄−1.

Note that it is related to the t-Wishart in the sense that if the p × p Bartlett

matrix B̄ was of dimension 1× 1, i.e. a scalar, the stochastic representation kernel

of the t-Wishart would arise. However, it is important to understand, that the

F distribution does not nest the t-Wishart and can thus not be thought of as

a more flexible version of it. Among the notable differences between the two

distributions is that the t-Wishart features much higher dependence among the

elements in the stochastic representation kernel. This is easy to see as for the

t-Wishart every element in BB⊤ is scaled by (b̄)−2, thus all elements are influenced

by one random variable. For the F on the other hand BB⊤ is scaled by B̄ which

itself consists of p(p + 1)/2 independent random variables. The Riesz version of

the F distribution, called the F -Riesz (FR) adds flexibility by allowing the χ2
ni

14



R2 2

R1 1

t-Riesz F -Riesz Riesz

Figure 2: Heatmap of marginal joint p.d.f. of the first RV and second RV (R1 1,
R2 2) implied by the Riesz, t-Riesz, and F -Riesz distributions for a two-
dimensional RC with the parameter setting Σ = I2, n = (15, 30)⊤, ν = 5
(t-Riesz), ν = (5, 5)⊤ (F -Riesz).

and χ2
νi
random variables to have different d.o.f. parameters, thus has stochastic

representation

B̄−⊤BB⊤B̄−1.

In Figures 1 and 2 we illustrate the differences between the Riesz, t-Riesz, and

F -Riesz. Figure 1 depicts the marginal p.d.f.s of the first RV (R1 1) implied by each

distribution for the parameter setting Σ = I2, n = (15, 30)⊤, with three different

settings for the d.o.f. parameters, ν = 5, 6, 10 (t-Riesz) and, correspondingly ν =

(5, 5)⊤, (6, 6)⊤, (10, 10)⊤ (F -Riesz). These parameter values are inspired by our

estimation results presented in Section 5 below. We see that the F -Riesz and

t-Riesz distributions feature similar marginal distributions for the RV, especially

for larger ν. This is not surprising, as the two distributions converge to the same

Riesz distribution as ν goes to infinity (see Section 2.5). The F -Riesz and t-Riesz

distributions compared to the Riesz have fatter tails, which become smaller with

increasing ν. Furthermore, the F -Riesz and t-Riesz have more probability mass

on small RVs than the Riesz. In Figure 2 we take the setting with ν = 5 (t-Riesz)

and ν = (5, 5)⊤ (F -Riesz) from above and plot the marginal joint distribution

of the two RVs (R1 1, R2 2). The plots look qualitatively the same for different

settings of ν. We first note that the Riesz distribution is drastically different in
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Figure 3: Marginal p.d.f.s of the first RV (R1 1) implied by the Inverse Riesz, In-
verse t-Riesz, and Inverse F -Riesz distributions for a two-dimensional
RC with the parameter setting Σ = I2, ν = (30, 15)⊤, and with three
different settings for the d.o.f. parameters, n = 4, 5, 10 (Inverse t-Riesz)
and n = (4, 4)⊤, (5, 5)⊤, (10, 10)⊤ (Inverse F -Riesz).

that most of its probability mass is centered around the value of one for both RVs

but the probability mass is less peaked and is spread out more (elliptically around

the coordinate (1,1)) than for the other two distributions. Comparing subplot one

and two, the stark differences between the t-Riesz and F -Riesz distribution now

become visible. The t-Riesz distributions’ probability mass lies in an elliptical

shape around the diagonal from bottom right to top left with a high peak in

probability mass on values between 0 and 0.5 for both RVs. This shape implies that

the two RVs are more likely to have similar values than drastically different ones

for any size of RV realization, which is in line with our analysis of the stochastic

representation kernels above. In contrast, the F -Riesz probability mass fans out in

a triangular fashion from the bottom left corner with more probability mass along

the coordinate axes than around the bottom-left to top-right diagonal. It also

peaks on values between 0 and 0.5, but the peak is less pronounced than for the t-

Riesz and for these small values the probability mass is much more spread out. We

see for the F -Riesz, that if one RV is small the probability of the other being small

is not nearly as high as for the t-Riesz and there lies substantial probability mass

on large realizations for the other RV. Conversely, if one RV has a tail realization

the other is more likely not to have one, a property Blasques et al. (2021) call

tail-heterogeneity. Consequently we call the t-Riesz distribution tail-homogeneous.

The correlation between the two RVs is 0 for the Riesz, 0.24 for the F -Riesz

distribution and 0.87 for the t-Riesz. All these observations are in line with the
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Figure 4: Heatmap of marginal joint p.d.f. of the first RV and second RV (R1 1,
R2 2) implied by the Inverse Riesz, Inverse t-Riesz, and Inverse F -Riesz
distributions for a two-dimensional RC with the parameter setting Σ =
I2, ν = (30, 15)⊤, n = 5 (Inverse t-Riesz), n = (5, 5)⊤ (Inverse F -Riesz).

intuition we gained above from analyzing the stochastic representation kernels. We

deduce that its plausible that the t-Riesz distribution family would perform better

during market-wide crises where all assets experience high volatility, whereas the

F -Riesz distribution could offer benefits when only a particular asset or subsections

of the market experience distress.

To complete the analysis of all distribution, we still have to consider the inverse

versions of the distributions mentioned so far. Unfortunately, it is difficult to gain

an intuition of the stochastic properties of inverse distributions since, due to the

inversion of the Bartlett matrices, the marginal distributions of the elements in

KD and their dependencies are not easily derived. However, we can visualize the

same marginal distributions as we did above for non-inverted distributions. Figure

3 plots the marginal p.d.f.s of the first RV (R1 1) implied by the Inverse Riesz,

Inverse t-Riesz, and Inverse F -Riesz distributions for the parameter settingΣ = I2,

ν = (30, 15)⊤, with three different settings for the d.o.f. parameters, n = 5, 6, 10

(Inverse t-Riesz) and, correspondingly n = (5, 5)⊤, (6, 6)⊤, (10, 10)⊤ (Inverse F -

Riesz). These parameter values are again inspired by our estimation results below.

We see that the marginal distribution of the RV is almost identical for the Inverse

F -Riesz and Inverse t-Riesz distributions. The Inverse F -Riesz and Inverse t-Riesz

distributions have is more skewed and has fatter tails than the Inverse Riesz, which

become smaller with increasing n. It is also noteworthy, that the Inverse Riesz,
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Riesz, (Inverse) t-Riesz, and (Inverse) F -Riesz distributions for a two-
dimensional RC with the parameter setting Σ = I2, and for the non-
inverted distributions, n = (15, 30)⊤, ν = 5 (t-Riesz), ν = (5, 5)⊤ (F -
Riesz), and for the inverse distributions, ν = (30, 15)⊤, n = 5 (Inverse
t-Riesz), n = (5, 5)⊤ (Inverse F -Riesz).

compared to the Riesz in Figure 1, has larger tails. Even though the Inverse

F -Riesz and Inverse t-Riesz have almost identical marginal distributions for the

RV, their joint marginal distributions of the first and second RV (R1 1 and R2 2)

differ substantially, as we can see in Figure 4. In particular, as for the t-Riesz,

the Inverse t-Riesz’s probability mass is very concentrated around the lower-left

to upper-right diagonal with a very high peak on values below 0.3 for both RVs.

This implies that R1 1 and R2 2 are highly correlated. Similarly to the non-inverted

version, Inverse F -Riesz’s probability mass is spread out in a triangular fashion

with a much lower peak than the Inverse t-Riesz. The correlation between R1 1

and R2 2 is 0.70, 0.017, and 0.023 for the Inverse t-Riesz, Inverse F -Riesz, and

Inverse Riesz, respectively. It is noteworthy, that the Inverse F -Riesz, compared

to the F -Riesz in Figure 2, is more spread out and features much lower correlation

between the RVs.

2.3 Fat-Tailedness

In the literature, fat-tailedness of RCs has been measured by or considered syn-

onymous to fat-tailedness of their diagonal elements, i.e. the RVs (c.f. Opschoor

et al. 2018 and Blasques et al. 2021). We extend this interpretation by taking

the log-determinant of the RCs as the quantity to determine their fat-tailedness

because the determinant of a matrix can be geometrically interpreted as its vol-
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ume. Naturally, we call those matrix-variate distributions fat-tailed that imply

fat-tailed marginal distributions for the log-determinant of their random matri-

ces. Conveniently, for random matrices from any of our considered distribution for

RCs, the log-determinant equals the sum of log-χ random variables. This can be

seen from the stochastic representations (Table 1). For example, for the F -Riesz

distribution, the stochastic representation of the log-determinant, omitting the

subscript t, is equal to

log |R| = log |CΩB̄
−⊤BB⊤B̄−1C⊤Ω | (15)

= 2

p∑

i=1

log(CΩ)ii + 2

p∑

i=1

log(χni−i+1)− 2

p∑

i=1

log(χνi−p+i), (16)

and for the t-Riesz distribution it is

log |R| = log |CΩ(b̄)
−2BB⊤C⊤Ω | (17)

= 2

p∑

i=1

log(CΩ)ii + 2

p∑

i=1

log(χni−i+1)− 2 p log(χν). (18)

We can then formalize the concept of fait-tailedness by considering a distribution

D1 to be more fat-tailed than another, D2, if there exists some real number x, such

that for all real y > x, the p.d.f.s are such that plog |R|,D1
(y) > plog |R|,D2

(y). For the

case of 1 × 1 random matrices, i.e. random variables, this definition corresponds

to the classical definition of fat-tailedness for random variables.

In Figure 5 we plot the marginal p.d.f.s of the log-determinant implied by the

Riesz-type distributions. We see, that the (Inverse) F -Riesz and (Inverse) t-Riesz

distributions can indeed be considered fat-tailed, as they feature fatter right tails

than the (Inverse) Riesz distribution. It is noteworthy that the t-Riesz distribution

features a fatter right tail than the F -Riesz.

2.4 Asset Ordering

For all Riesz-type distributions, a different ordering of the assets in the RCs yields

a different version of the respective probability distribution. That is, if we assume

R ∼ D(Ω,θD), then any other ordering the assets, PRP⊤, where P denotes an
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arbitrary permutation matrix9, has stochastic representation PCΩKD(CΩ)
⊤P⊤.10

This new stochastic representation yields for Riesz-type distributions a different

and generally unknown probability distribution, which we denote by DP(Ω,θD).

Only for the special case where R is the exchange matrix we do know the resulting

probability distributions (see next Section).

In practice, we are given a randomly ordered RC PRP⊤ for which the model

D(Ω,θD) is only correctly specified if, by chance, the random ordering corresponds

to the true one (P = I). To recover the true ordering, we can treat it as a parameter

to optimize over. Blasques et al. (2021) have proposed an efficient algorithm fro

maximizing the likelihood for many different orderings11 and then choosing the

ordering with the highest estimated likelihood value. In a simulation experiment,

they find that their algorithms’ estimated likelihood values come close to the

likelihood value of the true data-generating process and that the ordering of the

assets gets close to the true ordering.

2.4.1 Riesz Distribution Versions

For any Riesz-type distribution there are two versions; we call them version-I and

version-II (c.f. Blasques et al. 2021). In this subsection we contribute to the litera-

ture by showing that the two versions are closely related since assuming R follows

a version-I Riesz distribution is equivalent to assuming that R with the asset

order reversed, denoted by
←−
R, follows the corresponding version-II distribution

with “reversed” parameters. See Table 4 for the exact relationships.

To derive the equivalence we have to introduce some concepts. First note that

the permutation matrix which achieves a reversal of the asset order in R is the

is the exchange matrix, i.e. a matrix with ones on the diagonal from the upper

9. A permutation matrix is a square matrix that has exactly one entry of one in each row and
each column and zeros elsewhere.
10. Recall the stochastic representation of R is R = CΩKD(CΩ)

⊤.
11. As the number of possible orderings explodes with increasing p, trying all possible orderings

is infeasible.
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Our versions Alternative versions

R ∼ RI(Ω,n) ⇔ ←−
R ∼ RII(

←−
Ω ,←−n )

R ∼ iRII(Ω,ν) ⇔ ←−
R ∼ iRI(

←−
Ω ,←−ν )

R ∼ tRI(Ω,n, ν) ⇔ ←−
R ∼ tRII(

←−
Ω , ν,←−n )

R ∼ itRII(Ω, n,ν) ⇔ ←−
R ∼ itRI(

←−
Ω ,←−ν , n)

R ∼ FRI(Ω,n,ν) ⇔ ←−
R ∼ FRII(

←−
Ω ,←−ν ,←−n )

R ∼ iFRII(Ω,n,ν) ⇔ ←−
R ∼ iFRI(

←−
Ω ,←−ν ,←−n )

Table 4: Equivalence between the Riesz distribution versions. In this paper we
choose version-I for the non-inverted distribution and version-II for the
inverse ones. Outside of this subsection we do not refer to the different
versions and consequently drop the version superscripts for better read-
ability.

right-hand corner to the lower left-hand corner and zeros elsewhere,

Pe =




0 1

. .
.

1 0


 .

We can visualize
←−
R := PeRP⊤e as the original matrix rotated by 180 degrees.

Furthermore, note that PeB̄Pe is equal to B but with degrees of freedom ←−ν =

(νp, νp−1, . . . , ν1) instead of n. We denote it by B←−ν . Similarly, PeBPe is equal

to B̄ but with ←−n instead of ν, denoted by B̄←−n . Next, note that Pe = P⊤e , and

PePe = I, such that Pe = P−1e . Finally, note that we can write the reverse order

Ω as

←−
Ω = PeΩPe = PeCΩPePeC

⊤
ΩPe = U←−ΩU

⊤←−
Ω
,

where PeCΩPe = U←−Ω is the upper Cholesky factor of
←−
Ω , since the decomposition

of a symmetric positive definite matrix into an upper triangular matrix post-

multiplied by its transpose, i.e. the Cholesky decomposition, is unique.

We now show the equivalence between the two versions using the example of the

F -Riesz distribution. Assume that R follows our version-I F -Riesz distribution,
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R ∼ FR(Ω,n,ν). Then

PeRPe = PeCΩB̄
−⊤BB⊤B̄−1C⊤ΩPe

= PeCΩPePeB̄
−⊤PePeBPePeB

⊤PePeB̄
−1PePeC

⊤
ΩPe

= PeCΩPe(PeB̄Pe)
−⊤PeBPePeB

⊤Pe(PeB̄Pe)
−1(PeCΩPe)

⊤

= U←−ΩB
−⊤
←−ν B̄←−n B̄

⊤
←−nB

−1
←−ν U⊤←−

Ω
,

which is the stochastic representation of the version-II F -Riesz distribution with

parameters
←−
Ω , ←−ν , and ←−n , FRII(

←−
Ω ,←−ν ,←−n ) (Theorem 8 in Blasques et al. 2021).

We can derive the distributions of
←−
R for all other Riesz-type distributions in

similar fashion. In general, the alternative versions not used in this paper (right

column of Table 4) have stochastic representation kernels where B and B̄ (and

their special cases) are interchanged.

Empirically it does not matter which distribution version we assume since, as we

mentioned above, we take the asset order as a parameter to optimize over. That

is, assuming version I (II) and estimating it via maximum likelihood should yield

the “reversed” estimates for the asset order and the parameter values as compared

to assuming version II (I).

2.4.2 Inverse Distribution Versions

As you can see in Table 4, in this paper we choose the version-II distributions for

the inverted ones and the version-I distributions for the non-inverted ones. In this

way our stochastic representations are all defined in terms of the lower Cholesky

factor of Ω rather than its upper Cholesky factor (as for the version-I distribu-

tions for the inverted ones and the version-II distributions for the non-inverted

ones). To see this, note that assuming R follows a version-I (version-II) inverse

distribution with parameter matrix Ω−1 is equivalent to assuming thatR−1 follows

the corresponding version-I (version-II) non-inverted distribution with parame-

ter matrix Ω. This is how the inverse distributions are defined (e.g. Blasques et

al. 2021). As an example, let’s take a version-I Riesz distribution, R ∼ R(Ω−1,n),
and use the stochastic representation to derive its inverse, the version-I Inverse
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Riesz distribution, as defined above.

R = CΩ−1BB⊤C⊤Ω−1

⇔R−1 = C−⊤Ω−1B
−⊤B−1C−1Ω−1 .

The important thing to note here is, that the stochastic representation of the

version-I Inverse Riesz distribution features C−⊤Ω−1 = UΩ, which is the upper

Cholesky factor of Ω. In fact, we can derive in similar fashion, that the stochastic

representations of all inverse version-I distributions feature the upper Cholesky

factor ofΩ, while all inverse version-II distributions use the lower Cholesky factor.

Thus, in order to have one general stochastic representation formula based on the

lower Cholesky factor that is valid for all distributions in our paper, i.e. equation

(4) (R = CΩKDC⊤Ω), and since empirically it does not matter which distribution

version we choose (see above), we use the version-II for the inverse and version-I

for the non-inverted ones.

2.5 Distribution Relationships

Figure 6 shows how the distributions are related to each other. Every Wishart-

type distribution is a special case of its Riesz-type counterpart and is obtained by

setting the entries in each d.o.f. parameter vector all equal to each other. This

is easily seen from the stochastic representations in Table 1, where the Wishart-

type distributions have the same stochastic representation kernel as their Riesz-

type counterparts but with B and B̄ instead of B and B̄. The proofs for the

dashed arrows are also immediately evident from the stochastic representations

since in the case of B̄ (B) being one-dimensional, the stochastic representation

of the (Inverse) F -Riesz distribution reduces to the one of the (Inverse) t-Riesz

distribution. We derive the remaining relationships in the following Theorem

2.2.
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Theorem 2.2.

CM
− 1

2

FRKFRM
− 1

2

FRC
⊤ d−−−−−→
∀i:νi→∞

CM
− 1

2

R KRM
− 1

2

R C⊤

CM
− 1

2

iFRKiFRM
− 1

2

iFRC
⊤ d−−−−−→
∀i:ni→∞

CM
− 1

2

iRKiRM
− 1

2

iRC⊤

CM
− 1

2

tRKtRM
− 1

2

tRC⊤
d−−−→

ν→∞
CM

− 1
2

R KRM
− 1

2

R C⊤

CM
− 1

2

itRKitRM
− 1

2

itRC
⊤ d−−−→

n→∞
CM

− 1
2

iRKiRM
− 1

2

iRC⊤.

Proof in Appendix.

As they are just special cases, Theorem 2.2 also holds for the corresponding

Wishart-type distributions (F → W or iW , tW → W , itW → iW). Finally,

note that an Inverse F distribution is again an F distribution with the degrees of

freedom parameters switched and the expected value matrix inverted, as is easy

to see from their stochastic representations. However, an Inverse F -Riesz distri-

bution is not again an F -Riesz distribution (see Section 7.2 in the appendix). We

derive the novel Inverse F -Riesz distribution in this paper.

24



F -Riesz Inv.F -Riesz

t-Riesz Inv.t-Riesz

Riesz Inv.Riesz

t-Wishart Inv.t-WishartF

Wishart Inv.Wishart

dim
( B̄
) =

1

dim(B) = 1

dim(B) =
1

dim
(
B̄
)
= 1

∀i
ν i
→
∞

∀
i
n
i →
∞∀
i
ν
i
=

ν, n
i
=

n ∀i
ν i

=
ν,
n
i
=

n

ν →∞ n→∞

∀
i
n
i
=

n ∀
i
n
i
=

n

ν →∞ ν →∞

∀
i
ν
i
=

ν∀
i
ν
i
=

ν

n→∞
n→∞

dim
(
B̄
)
= 1dim(B) = 1

1

2

p

p+ 1

2p

# Parameters
p(p+ 1)/2+

1

Figure 6: Relationships between the standardized probability distributions. Stochastic representations given by equation (7) in
conjunction with Tables 1 and 3. Next to every arrow, we indicate how the distributions are related. Dashed arrows
indicate a more general relationship; not a nesting. The vertical axis shows the number of parameters of the respective
distributions. All distributions have p(p+ 1)/2 distinct parameters in the symmetric positive definite parameter matrix
Σ (or Ω) plus the number of d.o.f. parameters.
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2.6 Probability Density Functions

Let us define some special functions used in the probability density functions.

Definition 2.1 (Generalized Power Function). Let X be a real p×p matrix, n =

(n1, . . . , np)
⊤ be a real vector of length p and let X[i] denote the square submatrix

created by taking the first i rows and columns of X. Then the generalized power

function (a.k.a. highest weight vector), denoted by |X|n is defined as

|X|n = |X[1]|n1−n2 |X[2]|n2−n3 . . . |X[p−1]|np−1−np|X|np .

The generalized power function is defined in e.g. Faraut and Korányi (1994). The

determinant-with-subscript notation is taken from Blasques et al. (2021). It makes

immediately visible the close relation of the generalized power function to the de-

terminant since for n1 = n2 = . . . = np = n, |X|n = |X|n. The next lemma

shows that in the case of positive definite X, the generalized power function can

be written as a function of the diagonal elements of the lower Cholesky decompo-

sition of X. Blasques et al. (2021) name this special case power weighted determi-

nant.

Lemma 2.1 (Power Weighted Determinant). Let Σ be positive definite and Σ =

TDT⊤ be the unique decomposition into a lower triangular square matrix with

ones on the main diagonal, T and diagonal matrix with positive entries on the

diagonal D. Then we can rewrite

|Σ|n =

p∏

i=1

Dni

ii =

p∏

i=1

C2ni

ii .

Proof in Appendix.

The next lemma lists algebraic equalities for the power weighted determinant.
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Lemma 2.2 (Lemma 3, Blasques et al. 2021). Given a scalar n, a vector n of

length p, a vector of ones 1 of length p, and a positive definite matrix R, the

following identities hold.

(i) If n = n · 1, then |R|n·1 = |R|n

(ii) Let n1,n2 be two vectors of length p, then we have |R|n1
· |R|n2

= |R|n1+n2
.

(iii) (|R|n)−1 = |R|−n.

(iv) If Σ = CC⊤, where Σ is positive definite with lower Cholesky factor C,

then |R|n · |Σ|−n = |C−1RC−⊤|n. As a special case we have |Cdg(n)C⊤|ν =
∏p

i=1
nνi

i |Σ|ν.

(v) U |R|n = |R−1|−n.

Next, we define the (multivariate) gamma function as in e.g. equations (5.2.1),

(35.3.4) and (35.3.5) of the NIST Digital Library of Mathematical Functions.

Definition 2.2 (Multivariate Gamma Function). Let n be a real vector of length

p. Then the vector-valued multivariate gamma function is defined as

Γp(n) = πp(p−1)/4
p∏

i=1

Γ

(
ni −

i− 1

2

)
,

with 2ni > i− 1, i = 1, . . . p.

Let n be a scalar. Then the scalar-valued multivariate gamma function is defined

as

Γp(n) = πp(p−1)/4
p∏

i=1

Γ

(
n− i− 1

2

)
,

with 2n > p− 1.

Obviously if n1 = n2 = . . . = np = n, then

Γp(n) = Γp(n).
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Distribution Probability Density Function pD(R|Ω,θD)
Wishart 1

2np/2Γp(n/2)
|Ω|−n

2 |R|n−p−1
2 etr(− 1

2
Ω−1R)

Riesz 1

2pn̄/2Γp(n/2)
|Ω|−n

2
|R|n−p−1

2
etr(− 1

2
Ω−1R)

Inv.Wishart 1

2νp/2Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 etr(− 1

2
ΩR−1)

Inv.Riesz 1

2pν̄/2Γp(
←−ν /2)
|Ω| ν

2
|R|− ν+p+1

2
etr(− 1

2
ΩR−1)

t-Wishart Γ((ν+pn)/2)

Γp(n/2)Γ(ν/2)
|Ω|−n

2 |R|n−p−1
2 (1 + tr(Ω−1R))−

ν+pn
2

t-Riesz Γ((ν+pn̄)/2)

Γp(n/2)Γ(ν/2)
|Ω|−n

2
|R|n−p−1

2
(1 + tr(Ω−1R))−

ν+pn̄
2

Inv.t-Wishart Γ((n+pν)/2)

Γ(n/2)Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 (1 + tr(ΩR−1))−
n+pν

2

Inv.t-Riesz Γ((n+pν̄)/2)

Γ(n/2)Γp(
←−ν /2)
|Ω| ν

2
|R|− ν+p+1

2
(1 + tr(ΩR−1))−

n+pν̄
2

F Γp((n+ν)/2)

Γp(ν/2)Γp(n/2)
|Ω|−n

2 |R|n−p−1
2 |I+C−1Ω RC−⊤Ω |−

n+ν
2

F -Riesz Γp((
←−n+←−ν )/2)

Γp(n/2)Γp(
←−ν /2)
|Ω|−n

2
|R|n−p−1

2
|I+C−1Ω RC−⊤Ω |−n+ν

2

Inv.F -Riesz Γp((n+ν)/2)

Γp(n/2)Γp(
←−ν /2)
|Ω| ν

2
|R|− ν+p+1

2
|(I+C⊤ΩR

−1CΩ)
−1|n+ν

2

Table 5: Probability density functions of distributions for RCs. Derivations from
stochastic representations are in Section 7.2 (appendix). n̄ = 1

p

∑p

i=1
ni.

Now that we have introduced all special functions used in the probability density

functions (p.d.f.s), we list the p.d.f.s for all considered probability distributions in

Table 5. We derive the ones of the (Inverse) t-Riesz distribution and the Inverse

F -Riesz distribution in Theorem 2.3, the ones of the (Inverse) Riesz and F -Riesz

distributions are given in Theorems 4, 7 and 8 of Blasques et al. (2021). See

Section 7.2 in the appendix for more details.

Theorem 2.3 (Probability Density Functions). The probability density functions

of CΩKDCΩ for D ∈ (tR, itR, iFR) obtain as

ptR(R|Ω,n, ν) =
Γ ((ν + pn̄)/2)

Γ(ν/2)Γp(n/2)
|Ω|−n

2
|R|n−p−1

2

(
1 + tr

(
Ω−1R

))− ν+pn̄
2 ,

pitR(R|Ω, n,ν) =
Γ ((n+ pν̄)/2)

Γ (n/2) Γp

(←−ν /2
) |Ω| ν

2
|R|− ν+p+1

2
(1 + tr (ΩR−1))

−n+pν̄
2 ,

piFR(R|Ω,n,ν) =
Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2)

|Ω| ν
2
|R|− ν+p+1

2

∣∣∣
(
I+C⊤ΩR

−1CΩ

)−1∣∣∣
ν+n

2

.

Proof in Appendix.

The p.d.f.s of the Wishart-type distributions follow by simply setting all entries
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in the d.o.f. vectors equal to each other. The p.d.f.s of the standardized probability

distributions, which we indicate by writing pD(Σ,θD) instead of pD(Ω,θD), are

given in the appendix in Table 11. They are easily derived by replacing Ω with

CM−1
D C⊤.12

3 The t-Riesz Distribution Family Based on Intraday

Return Vectors

This section shows how our novel t-Riesz distribution family arises naturally as the

distribution of the standard realized covariance matrix under a set of assumptions

on the underlying intraday return vectors. To be precise, let us add subscripts

for the days in our sample, t = 1, . . . , T , to represent the time-series of RCs as

{Rt}Tt=1. Each day is split into intraday sub-periods of equal length, j = 1, . . . ,m,

to represent the j’th intraday return vector on day t as rt,j = (rt,j,1, . . . , rt,j,p)
⊤.

The day-t standard realized covariance matrix is then defined as

Rt =
m∑

j=1

rt,jr
⊤
t,j. (19)

So Rt is almost surely positive definite if m ≥ p.13

We denote themp×1 vector of all intraday returns on day t as r̃t = (r⊤t,1, r
⊤
t,2, . . . , r

⊤
t,m)

⊤,

and the vector that collects all intraday returns as r̃ = (r̃⊤1 , . . . , r̃
⊤
T )
⊤. We start

from the very general assumption that all intraday returns on all days jointly fol-

low a multivariate elliptically contoured distribution14 with zero mean vector and

block diagonal scale matrix Ω̃ = (I(Tm) ⊗Ω),

r̃ ∼ E(0, I(Tm) ⊗Ω, ζ), (20)

where the exact functional form of ζ : [0,∞)→ R determines the specific elliptical

distribution. The block diagonal scale matrix implies that there is no correlation

12. See Section 7.2 in the appendix for more details.
13. As mentioned in Section 5.2 below, we effectively make use of 385 intraday return vectors

for each day by employing the 5-minute realized covariance matrix subsampled every minute of
the trading day. Thus positive definiteness is given up to p = 385.
14. as defined in Definition 2.1 of Gupta, Varga, and Bodnar 2013
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between the intraday returns of different intraday intervals, but there is correlation

between those on the same intraday interval j. The joint distribution of all realized

covariance matrices {Rt}Tt=1 implied by the above assumption on r̃ is given by

Theorem 3.1.

Theorem 3.1. (Gupta, Varga, and Bodnar 2013) Let r̃ = (r̃⊤1 , . . . , r̃
⊤
T )
⊤ follow a

multivariate elliptically contoured distribution with zero mean vector, Tmp×Tmp
scale matrix Ω̃ = (I(Tm) ⊗Ω) and p.d.f.

f(r̃) = |Ω|−Tm/2h(r̃⊤ Ω̃ r̃). (21)

Then the joint p.d.f. of (R1,R2, . . . ,RT ), where Rt =
∑m

j=1
rt,jr

⊤
t,j, obtains as

π
Tmp

2

Γp

(
m

2

)T
T∏

t=1

|Rt|
m−p−1

2 f

(
tr

(
T∑

t=1

RtΩ
−1

))
. (22)

The marginal p.d.f. of Rt is given by

π
mp
2

Γp

(
m

2

) |Rt|
m−p−1

2 f
(
tr
(
RtΩ

−1)) . (23)

a Proof in Appendix.

a. Note that these distributions for Rt are also defined if m is a real, rather than natural
number (in the previous section we called this real parameter n).

For the special case, where r̃ is follows a multivariate normal distribution, the

marginal distribution of a specific Rt (equation 23) is a Wishart distribution

Rt ∼ W(Ω,m). In fact, in the Wishart case, the joint distribution of all Rt given

derived from equation (39) is equal to the product of their marginal distributions,

which implies independence, Rt
iid∼ W(Ω,m). However, the normality assumption

for financial return vectors is strongly rejected by the data. Furthermore, the mul-

tivariate normality assumption with block-diagonal covariance matrix Ω̃ implicitly

assumes that the individual intraday return vectors rt,j are independent of each

other also within each day, which is a very strong assumption. A more realistic

multivariate elliptically contoured distribution is the multivariate t-distribution,

as it accommodates the fat tails observed in financial return data. Although due

to the block-diagonal structure of Ω̃ there is no correlation between the rt,j, the
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multivariate t distribution does imply dependence between them. For this spe-

cial case, i.e. r̃ ∼ mvt(0, Ω̃, ν), the marginal distributions correspond to what we

call the t-Wishart distribution, denoted by Rt ∼ tW(Ω,m, ν). For t1 ̸= t2, Rt1

and Rt2 are dependent.15 The superior performance of the t-Wishart distribution

over the Wishart (as documented in Section 5) indicates that the assumption of

fat-tails and dependence between the intraday return vectors (as implied by the

multivariate t-distribution) is more realistic.16

Unfortunately the assumption of a joint distribution with the simple block-

diagonal scale matrix for all intraday return vectors is unrealistic. Researchers

have documented that the covariance matrix of asset returns varies over time

(volatility clustering), which is at odds with the assumption that every intraday

return vectors’ marginal distribution has the same scale matrix Ω as implied by

the block-diagonal structure. Furthermore, we only observe returns during market

hours. Thus, the equally spaced grid of intraday returns that connects across days

is not a realistic assumption. For these reasons, we relax the assumption of a joint

distribution for all intraday returns and assume instead that only those intraday

returns on the same day follow jointly an elliptically contoured distribution, with

a time-varying scale matrix, conditional on all previous intraday returns.

r̃t|Ft−1 ∼ E(0, I(m) ⊗Ωt, ζ), (24)

where Ft−1 = {r̃t−1, r̃t−2, . . . }. By Theorem 3.117, this assumption implies that

Rt|Ft−1 follows a conditional distribution with time-varying scale matrices and

p.d.f.

π
mp
2

Γp

(
m

2

) |Rt|
m−p−1

2 f
(
tr
(
RtΩ

−1
t

))
. (25)

So, for example, if we assume an intraday joint t-distribution (normal distribution)

15. Another version of the t-Wishart was first introduced by Sutradhar and Ali (1989).
16. We also tried the multivariate hyperbolic distribution (leading to the hyperbolic-Wishart),

which is a generalization of the multivariate t distribution and the multivariate Laplace dis-
tribution (leading to the Laplace-Wishart). In both a low-dimensional and a high-dimensional
estimation there were no substantial likelihood gains over the t-Wishart. The hyperbolic-Wishart
numerical maximum likelihood parameter estimates converged to almost exactly its special case,
the t-Wishart distribution.
17. Set T = 1, i.e. chooose one specific day only.
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for r̃t, this implies a t-Wishart (Wishart) distribution with a time-varying scale

matrix,

Rt|Ft−1 ∼ tW(Ωt,m, ν). (26)

To summarize, we assume a static model for the intraday return vectors of a given

day t (elliptical distribution with static scale matrix I(m) ⊗ Ωt), but a dynamic

model across days (the scale matrix varies from day to day).

Next, we are going to derive the t-Riesz distribution under the same assumption

of a joint multivariate t-distribution of the intraday returns of a given day, but

with the notion of asset liquidity included.18 We measure liquidity for a given asset

by the number of intraday intervals where at least one trade occurred, and thus a

new price observation was recorded. Only those intraday returns in r̃t for which

there was a new price observation are assumed to jointly follow a multivariate

t-distribution, while the others are replaced by zeros.19

In fact, zero returns are far too frequent in financial asset return data for the

assumption of a continuous distribution for returns (like the t-distribution) to be

realistic. This was shown by e.g. Sucarrat and Grønneberg (2020). Excluding

returns that are zero due to missing price observations makes the assumption

of a continuous distribution more realistic. The treatment of missing new price

observations as deterministic zeros was proposed by Gribisch and Hartkopf (2022)

and Hassairi, Ktari, and Zine (2022), who derive the Riesz distribution from the

assumption of a joint normal distribution on all intraday returns of a given day t.

We can represent the missing price observations mathematically by using the

stochastic representation of a multivariate t-distribution, r̃t =
√
y
t
CΩ̃t

z̃t, where

yt ∼ Γ(ν/2, 2/ν) and with z̃t = (z⊤t,1, z
⊤
t,2, . . . , z

⊤
t,m)

⊤, zt,j = (zt,j,1, zt,j,2, . . . , zt,j,p)
⊤,

and the innovation on day t on intraday-return interval j of asset i given by

zt,j,i =




0 if there is a missing observation,

iid∼ N (0, 1) else.

18. Recall that the t-distribution is a generalization of the t-Wishart distribution with d.o.f. pa-
rameter vector n instead of scalar n, where the two distributions are equal if n = (n, . . . , n)⊤.
19. Since there was no new price observation, previous-tick interpolation would make these

returns zero anyway.
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Note that this is equivalent to saying that only those intraday returns follow jointly

a multivariate t-distribution for which there exists a new price observation in the

corresponding intraday interval.

Due to the block-diagonal structure of Ω̃, the p ×m matrix of all m intraday

return vectors stacked next to each other can be written as

Xt = [rt,1, rt,2, . . . rt,m] = ytCΩt
[zt,1, zt,2, . . . zt,m] = ytCΩt

Zt (27)

with p×m matrix Zt. We require that

1. at least one asset has a new price observation on all intraday intervals m,

2. the asset with the i’th most price observations has a price observation on

a subset of the intraday intervals where the asset with the (i + 1)’th most

price observations, and

3. the assets are sorted from least to most liquid in the intraday return vectors

rt,j.

That is, Zt must have a structure like

Zt =




zt,1,1 . . . zt,m1,1 0 . . . 0 0 . . . 0
...

...
...

...
...

zt,1,p−1 . . . zt,m1,p−1 zt,m1+1,p−1 . . . zt,mp−1,p−1 0 . . . 0

zt,1,p . . . zt,m1,p zt,m1+1,p . . . zt,mp−1,p zt,mp−1+1,p . . . zt,mp,p



,

(28)

where the columns are “interchangeable”. For example,




zt,1,1 zt,2,1 0

zt,1,2 zt,2,2 0

zt,1,3 zt,2,3 zt,3,3


 and




zt,1,1 0 zt,3,1

zt,1,2 0 zt,3,2

zt,1,3 zt,2,3 zt,3,3


 (29)
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are possible, but not




zt,1,1 zt,2,1 0

zt,1,2 0 zt,3,2

zt,1,3 zt,2,3 zt,3,3


 . (30)

The vector m = (m1,m2, . . . ,mp)
⊤,m1 ≤ m2 ≤ . . . ≤ mp, contains for each asset

i the number of intraday intervals with a new price observation mi.

Theorem 3.2. (The t-Riesz distribution.) For a given day t, let only those in-

traday returns for which there exists a new price observation in the corresponding

intraday interval follow jointly a multivariate t-distribution with d.o.f. ν while

replacing the others with zeros. More precisely, as explained above, assume that

the vector of all intraday returns on day t is given by r̃t =
√
y
t
CΩ̃t

z̃t, where

yt ∼ Γ(ν/2, 2/ν), CΩ̃t
is the lower Cholesky decomposition of Ω̃, and z̃t is a

vector of standard normal distributed random variables and zeros with the restric-

tions on the placement of the zeros as explained in bulletpoints 1.-3. above. Then

the RC on day t follows a t-Riesz distribution.

Rt ∼ tR(Ωt,m, ν). (31)

a Proof in Appendix.

a. The t-Riesz distribution is still defined if the d.o.f. parameter vector m is a vector of reals
n = (n1, . . . , np), rather than of natural numbers mi.

Note that for the t-Wishart distribution, which is obtained for the special case

of of no missing new price observations (m1 = m2 = mp = m), the assets can be

ordered in any way. This is reflected in the fact that the t-Wishart is invariant

to the ordering of the assets. Theorem 3.2 is a generalization (and slight refor-

mulation) of a finding in Gribisch and Hartkopf (2022) (see also Hassairi, Ktari,

and Zine 2022, and Veleva 2009). They show that the standard Riesz distribution

can be generated by assuming a normal distribution on the intraday returns with

heterogeneous liquidity. As for the t-Wishart compared to the Wishart, the supe-

rior performance of the t-Riesz compared to the Riesz distribution, shown in the

empirical section below, mirrors that the assumption of a multivariate t compared
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to the normal distribution on the intraday return vectors is more appropriate.

4 Time-Varying Mean

Now we specify the time-variation of Ωt to model the volatility dynamics. After

having introduced the t-Riesz distribution family in the previous section, we return

here to the full scope of all distributions considered in this paper. We assume

Rt|Ft−1 ∼ D(Ωt,θD), (32)

where D indicates the chosen distribution, Ft−1 = {Rt−1,Rt−2, . . . } and the

distribution-specific d.o.f. parameters (θD) remain constant over time.

Ωt has a slightly different meaning for the various distributions, while Σt (the

mean) has the same for all. So to achieve better comparability across distribu-

tions we assume that the time-variation in Ωt is driven by time-variation in Σt of

the underlying distribution and focus on the equivalent standardized distribution

representations

Rt|Ft−1 ∼ D(Σt,θD). (33)

A commonly used updating mechanism for Σt, which we also assume in this paper,

is the scalar-BEKK20 recursion given by

Σt = (1− a− b)Ξ+ aRt−1 + bΣt−1, (34)

where the intercept parameter matrix Ξ is symmetric positive definite of dimension

p × p and a and b are scalar parameters, sometimes called ARCH and GARCH

parameter, respectively. For stationarity a necessary condition is that a, b > 0 ∧
(a+ b) < 1 under which we have that the unconditional mean

E [Rt] = Ξ. (35)

20. Named after Yoshi Baba, Robert Engle, Dennis Kraft, and Ken Kroner who wrote an earlier
version of the paper Engle and Kroner (1995) in which the BEKK recursion is proposed.
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In this paper, we assume stationarity. Note that if we restrict a = b = 0 in

equation (34), we end up with a static distribution that is, Σ = Ξ, and

Rt
iid∼ D(Σ,θD).

5 Empirical Analysis

5.1 Estimation

The number of parameters is dominated by the order O(p2) matrix Ξ, which has

p(p + 1)/2 unique elements. This makes one-step numerical maximum likelihood

estimation for, say, p > 5 very computationally expensive and for, say, p > 10

infeasible. To alleviate this so-called curse of dimensionality, we estimate Ξ (or

Σ in the static model) with its obvious (see equation (35)) method-of-moments

estimator

Ξ̂ =
1

T

T∑

t=1

Rt,

and estimate the remaining parameters (θD, a, and b) conditional on Ξ̂ via stan-

dard numerical maximum likelihood estimation. This multi-step estimation pro-

cedure, sometimes called targeting, reduces the size of the numerical optimization

problem to the order of at most O(p), and for the Wishart-type distributions to at

most four21 parameters. The targeting two-step estimation procedure is common

in the literature (see e.g. Noureldin, Shephard, and Sheppard 2012, Opschoor et

al. 2018). Its consistency is intuitive and has been shown in the traditional multi-

variate GARCH framework by Francq, Horváth, and Zaköıan (2014). We expect

consistency to carry over to the realized multivariate GARCH framework. In the

empirical section of this paper, we always use this two-step estimation procedure,

regardless of the cross-sectional dimension p.

A complication is that, as mentioned above, the ordering of the assets matters

for the Riesz-type distributions. We follow the algorithm proposed in Blasques

et al. (2021) to optimize over the asset order (see Section 2.4).22 This algorithm

21. These are n, and/or ν, a and b.
22. The seed for the random generation of permutations to try initially is kept the same for all
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iteratively optimizes the likelihood for many different orderings of the assets (but

not for all of the p! possible ones, as this is computationally impossible). As such,

it is clearly inconsistent but Blasques et al. (2021) have shown in a simulation

experiment that its estimated likelihood value comes reasonably close to the one

of the true asset ordering.

5.2 Data

Our original data are one-minute close prices from all trading days from 01 January

1998 to 05 February 2021 for every stock that was a constituent of the S&P 500

index during the sample period. We acquired the data from Quantquote23, who

combine, clean and process data directly obtained from various exchanges, where

the biggest are NYSE, NASDAQ and AMEX24.

We aim to generate the longest possible time-series of accurately estimated

daily integrated covariance estimators. We exclude dates before 01 January 2002,

because the NYSE fully implemented decimal pricing in 200125 and there are

numerous other trading irregularities during 200126. This leaves 4808 trading

days. We then exclude stocks that have not been traded on one of the remaining

days in the sample, which leaves 465 of 983 stocks. We only keep observations

from official trading hours to be consistent across trading days. We then choose

the 100 stocks with the most one-minute close price observations. Of those, the

one with the least observations has, on average, 385.18 one-minute close price

observations per trading day. Since the typical trading day has 390 minutes, on

average less than five close prices are missing per day. Excluding illiquid stocks

is common practice in creating time-series of RCs (see e.g. Lunde, Shephard, and

Sheppard 2016). While this procedure biases the sample towards stocks that were

very liquid over the entire sample period27, it does ensure that the integrated

covariance estimates are accurate for those stocks included.

Riesz-type distributions.
23. The Caltech Quantitative Finance Group recommends the company, see http://quant.

caltech.edu/historical-stock-data.html.
24. AMEX was bought by NYSE in 2008, and handled only 10% of trades at its height
25. On 29 January 2001 to be precise.
26. For example the days surrounding the terrorist attacks on 11 September 2001 and ”com-

puter systems connectivity problems” on 08 June 2001.
27. Relatively young firms (e.g. Facebook or Tesla) are excluded.
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Figure 7: Top row: Annualized realized volatilities of Apple (aapl) and Goldman
Sachs (gs), i.e. the square root of two of the elements on the main di-
agonal of the 100 asset Rt for the complete sample (01 January 2002
to 05 February 2021). Bottom row: Realized correlation between Apple
and Goldman Sachs RCORRaapl,gs = Raapl,gs/(

√
RVaapl

√
RVgs) and the

natural logarithm of the determinant of the 100 assets Rt over time.

We follow Opschoor et al. (2018) and Blasques et al. (2021) and use five-minute

returns to construct the 100-dimensional RCs. More specifically, we choose the

subsampling realized covariance matrix which has been introduced by Zhang, Myk-

land, and Aı̈t-Sahalia (2005) (see also Sheppard 2012). It is more efficient than

the simple realized covariance matrix since it uses all our data (not just the data

of one of the five-minute grids) by averaging the five distinct RCs obtained from

these grids.28 Furthermore, it produces positive definite matrices, even for high

cross-sectional dimensions and low sampling frequencies.29

For a view of the data, see Figure 7, which shows the annualized realized volatil-

ity for Apple (appl) and Goldman Sachs (gs), as well as their realized correlation

and the log-determinant of the 100-asset RCs. We see that the spikes in volatility

are of similar magnitude for Apple and Goldman Sachs in the recent COVID-

19-induced market turmoil, while the global financial crises of 2008/2009 caused

volatility to spike much higher for Goldman Sachs than for Apple. The dot-com

crisis (early 2000s), on the other hand, causes more volatility for Apple. We

28. The distinct five time-grids start (on a typical trading day) at 09:00, 09:01, 09:02, 09:03
and 09:04, respectively.
29. On a typical trading day we have 390/5=70 intraday return vectors on a five-minute grid.

This allows for a maximum 70 assets to generate positive definite RCs. With subsampling,
however, RCs are based on 385 five-minute return vectors, so for up to 385 assets the resulting
RCs are positive definite.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 135715 169570 337345 1055471 1077579 766533
Riesz 111237 140588 216604 691184 364470 251984
Inv.Wishart 101569 107661 223770 512282 328090 159749
Inv.Riesz 91149 93219 155817 361421 -69304 -87478
t-Wishart 49501 61117 77251 51997 -170922 -464564
t-Riesz 35264 46763 4442 -98244 -587842 -708956
Inv.t-Wishart 49650 55250 81863 24882 -381119 -773173
Inv.t-Riesz 41836 39405 16673 -113641 -750048 -887689
F 97642 104077 195081 444660 112776 -26494
F -Riesz 53016 58764 28253 61374 -612694 -663926
Inv.F -Riesz 59456 60140 45710 141882 -550025 -614263

Table 6: Bayes Information Criterion (BIC) values for the estimated static dis-
tributions on various datasets. The background shades are to be read
column-wise, with the lowest BIC value shaded black and the highest
shaded white, with linear gray-scaling in between. Largest values in red.

see that correlations are mainly positive and more stable around crisis periods.

Finally, we see that the log-determinant of Rt, as a measure of the size of the

RCs, does indeed spike in the aforementioned market turmoil periods (dot-com,

COVID-19, global financial crisis).

From the 100-dimensional dataset described, we randomly choose a 5, 10, and

25-dimensional principal submatrix, as well as the three principal submatrices

corresponding to companies with SIC codes of the (1) Financial, Insurance and

Real Estate, (2) Mining and (3) High-End Manufacturing division, for a total of

six datasets. The division-specific datasets are chosen to investigate whether the

tail-homogeneous distributions better fit more homogeneous data.

5.3 In-Sample

5.3.1 Static Distributions

As a first empirical exercise, we fit the different static distributions (i.e. Σt =

Ξ) to the data. We use the two-step estimation method described above for

all distributions and datasets. Table 14 in the appendix shows the estimated

d.o.f. parameters. We focus now on Table 6, which shows the estimated Bayes

Information Criterion (BIC) values. The distribution rankings according to BIC
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Figure 8: Histograms, normed to reflect p.d.f.s, of log |Rt|, and of the realized
variance of Amgen, RVamgn = (Rt)1 1 of the ten-dimensional dataset, as
well as the respective marginal p.d.f.s implied by the fitted static ma-
trix distributions. The p.d.f.s are kernel density estimates on 1.000.000
simulated realizations.

values are robust across the different datasets. We see a clustered pattern, where

the (Inverse) Wishart, (Inverse) Riesz and F distribution could be considered as

a group of similar fit and the (Inverse) t-Wishart, (Inverse) t-Riesz and (Inverse)

F -Riesz as another group. The t-Riesz and Inverse t-Riesz distribution stand

out from this second group since, for all datasets, one of these two obtains the

best BIC value. The industry-specific datasets (Mining, Finance, and High-End

Manufacturing) show a clear pattern favoring the t-Riesz distribution family. The

F -Riesz and Inverse F -Riesz distributions also fit quite well overall, especially in

the randomly drawn datasets. The Riesz and its special case, the Wishart, are

the worst-fitting static distributions.

Next, we investigate how the different distributions for RCs match specific

marginal characteristics of the data. In Figure 8, we plot the histograms of the log-

determinant and the first diagonal element (RV of Amgen) of the ten-dimensional

dataset. In the same figure we also plot the corresponding marginal p.d.f.s im-

plied by the fitted probability distributions for RCs.30 First, we observe that the

30. The plots for other datasets and companies look similar.
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t-Wishart and t-Riesz distributions clearly mirror the empirical distribution of

both the log-determinant and the RVs best. Second, only the t-Riesz distribution

family (last row of the figure) exhibits a reasonable marginal distribution of the

log-determinant; all other distributions have too much probability mass around

their center and too little in the tails.

The F and F -Riesz distributions (second row, first column of the figure) do not

match the (tail)-distribution of the log-determinant of the t-Wishart and t-Riesz

because their ν and ν d.o.f. parameter estimates are much higher (see Table 14

in the appendix). The d.o.f. parameters influence on the distribution of the log-

determinant can be seen in the equations (15) and (17). In fact, the estimated

ν parameter is fairly constant and close to five across all cross-sectional dimen-

sions, whereas it increases for the F distribution from 11 for the five-dimensional

dataset to 46 for the 25-dimensional dataset. A similar pattern is visible for the

corresponding Riesz-type distributions. So we can see that in our definition of

fat-tailedness, only the t-Riesz distribution family can be considered fat-tailed,

as the other distributions do not have sufficient probability mass on large (> 10)

log-determinants.

Considering the fat-tailedness of the RVs, the small subplots on the right column

in Figure 8 show that all but the Wishart and Riesz distribution reasonably well

match their empirical tail behavior. Again the t-Riesz distribution family implies

the most probability mass on large RVs and the t-Riesz and t-Wishart match the

empirical distribution in the tails best. For the entire distribution of the RVs the

t-Riesz distribution family also clearly fits best. All other distributions assume too

little probability mass on RVs smaller than one and too much on values between

one and four. In particular, the fit of the t-Riesz and t-Wishart distribution

marginal p.d.f.s for the empirical RVs are very good.

Next, in Figure 9, we plot the histogram of the realized covariances (RCOVS)

between Cisco and Amgen ((Rt)2 1.
31 We see that the t-Riesz family also clearly

fits best for the covariances, while the other distributions allocate too little proba-

bility mass RCOVs between 0 and 0.5 and too much probability mass on negative

RCOVs and on RCOVs between 0.5 and 2.

31. The plots of the RV of Cisco in column one and the implied fitted distributions confirm
our observations on RVs in the previous paragraph.
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Figure 9: Histograms, normed to reflect p.d.f.s, of the realized variance of Cisco,
RVcsco = (Rt)2 2, and of the realized covariance between Cisco and Am-
gen, RVamgen = (Rt)2 1, in the ten-dimensional dataset, as well as the
respective marginal p.d.f.s implied by the fitted static matrix distribu-
tions. The p.d.f.s are kernel density estimates on 1.000.000 simulated
realizations.
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come from the fitted t-Riesz and F -Riesz distribution and are kernel
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Figure 11: Difference in estimated log-likelihood contributions between Inverse t-

Riesz and F -Riesz distributions, log pitR(Rt|Σ̂, θ̂) − log pFR(Rt|Σ̂, θ̂).
Least-squares line is in gray.

Now we turn to tail-heterogeneity versus tail-homogeneity. We plot in Figure

10 histograms of the RV of Amgen (Cisco) given that the RV of Cisco (Amgen)

has a tail-realization and given that it does not. We plot on top of each histogram

the conditional p.d.f.s implied by the t-Riesz and F -Riesz distribution. A tail-

realization is defined as an RV of a given asset that exceeds its empirical 95%

quantile. Comparing the empirical distributions in the histograms, we see that

an RV has a much higher probability of large realizations if another RV has a

tail-realization (i.e. tail-homogeneity). The t-Riesz distribution can mirror this

property of the data much better than the F -Riesz. While the F -Riesz has more

probability mass on large RVs if another RV has a tail-realization, compared to

if the other RV does not, this right-shift in probability mass is not as large as

for the t-Riesz. Thus, as we explained intuitively by looking at the respective

stochastic representation of the t-Riesz and F -Riesz in Section 3, it does make

sense to call the t-Riesz tail-homogeneous and the F -Riesz tail-heterogeneous and

our data favours tail-homogeneity.

Finally, we examine the differences in log-likelihood values between the tail-

homogeneous Inverse t-Riesz and the tail-heterogeneous F -Riesz distribution more

closely.32 Figure 11 shows the difference in log-likelihood contributions between

the two distributions depending on the log-determinant of the RCs for the random

32. We take the Inverse t-Riesz distribution in this comparison because, in the dynamic setting,
it will turn out to be the distribution of the t-Riesz distribution family with the best log-likelihood
values and will be in close competition with the F -Riesz.

43



â
Assets: Random Mining Random Finance Random Manuf.

#Assets: 5 6 10 15 25 25
Wishart 0.364 0.306 0.284 0.299 0.189 0.188
Riesz 0.339 0.286 0.259 0.275 0.161 0.160
Inv.Wishart 0.238 0.211 0.183 0.177 0.115 0.098
Inv.Riesz 0.242 0.206 0.181 0.168 0.108 0.094
t-Wishart 0.196 0.150 0.127 0.090 0.080 0.066
t-Riesz 0.186 0.132 0.117 0.072 0.070 0.052
Inv.t-Wishart 0.153 0.127 0.101 0.074 0.065 0.053
Inv.t-Riesz 0.154 0.122 0.097 0.067 0.059 0.050
F 0.257 0.231 0.198 0.192 0.126 0.110
F -Riesz 0.200 0.166 0.145 0.136 0.091 0.078
Inv.F -Riesz 0.215 0.179 0.156 0.147 0.095 0.084

Table 7: Estimated ARCH â parameters of the models in equations (33) and (34)
for the different datasets and all distributions for RCs. All estimated
â are highly significant, with the median (smallest) t-stat equalling 552
(123). The estimated persistence (â + b̂) is very similar across datasets
and distributions and ranges from 0.976 (Wishart, dataset “Random 5”)
to 0.999 (Inverse t-Wishart, dataset “Finance 15”). All estimated b̂ are
highly significant, with the median (smallest) t-stat equalling 3060 (399).

ten-dimensional and the Finance 15-dimensional dataset. We see that the Inverse

t-Riesz distribution gains its advantage in static fit mainly from the RCs with

larger log-determinants. This is in line with our expectation that tail-heterogeneity

is disadvantageous for crisis periods. The Inverse t-Riesz also fits better for very

small RCs, which can be rationalized by the fact that in times of a very calm

market, financial assets behave very homogeneously as well.

5.3.2 Time-Varying Mean

Now we fit the dynamic time-varying mean models for the different distributions

to the datasets. The estimated d.o.f. parameters are given in Table 15 in the ap-

pendix. Table 7 contains the estimated ARCH parameters (â). They are all highly

significant. The estimated persistence parameters (â + b̂) are very close across

distributions and datasets and range from 0.976 (Wishart, dataset “Random 5”)

to 0.999 (Inverse t-Wishart, dataset “Finance 15”) with all GARCH parameters

(b̂) being highly significant. We see several clear patterns.

First, the estimated ARCH parameters become smaller with increasing cross-
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 31334 22815 3269 -110723 -664333 -658311
Riesz 23901 12807 -25662 -176617 -843507 -844053
Inv.Wishart 15473 -3200 -64980 -263597 -1080371 -1092674
Inv.Riesz 11796 -8079 -79208 -295532 -1146456 -1164924
t-Wishart 10739 -11625 -66693 -297959 -935757 -933123
t-Riesz 5477 -16906 -87656 -355525 -1075614 -1079903
Inv.t-Wishart 2987 -22360 -109908 -390030 -1276488 -1308378
Inv.t-Riesz -702 -26336 -123708 -425383 -1329647 -1365443
F 13960 -4742 -70770 -283792 -1140218 -1142989
F -Riesz -1230 -24963 -124236 -379116 -1336077 -1345603
Inv.F -Riesz 456 -22958 -118306 -369412 -1322051 -1327107

Table 8: Bayes Information Criterion (BIC) values for the estimated dynamic dis-
tributions and different datasets. The background shades are to be read
column-wise, with the lowest BIC value shaded black and the highest
shaded white, with linear gray-scaling in between. Largest values in red.

sectional dimension p for all distributions. This pattern has been documented by

Pakel et al. (2021) to be estimation bias. It is larger, the larger the dimension p

and is caused by the method-of-moments estimator Ξ̂. They show that composite

likelihood estimation can mitigate the bias. Unfortunately, composite likelihood

estimation is not straightforward to apply on Riesz-type distributions due to their

d.o.f. parameter vector(s). Another way to mitigate this bias might be to use a

shrinkage estimator as in Engle, Ledoit, and Wolf (2019). In this paper, however,

we focus on differences between assumed probability distributions for RCs. We

do not expect the relative ranking results to change if we use one of the above-

mentioned methods to estimate the intercept matrix Ξ.

The second pattern we observe is, that the estimated a are smallest for the

t-Riesz distribution family across all dimensions, followed by the F -Riesz distri-

butions and largest for the Riesz distributions and the F distribution. That is,

the t-Riesz distribution family reacts least to the previous realizations Rt−1 to

update the mean Σt, which indicates the excellent (unconditional) fit of these

distributions. In contrast, the Wishart distribution reacts most to the previous

Rt−1, indicating a worse fit of the distributional assumption. In terms of fit and

forecasting performance, a large mean-shifting reaction to previous RCs (as for

the Wishart model) is actually beneficial in crisis periods, where RCs suddenly

45



spike in size and stay large for a short time. The good overall distributional fit of

other distributions causes them to react more slowly to those volatility bursts.
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Figure 12: Difference in estimated log-likelihood contributions between Inverse t-
Riesz and F -Riesz distributions with time-varying expected value ma-
trix, log pitR(Rt|Σ̂t, θ̂)− log pFR(Rt|Σ̂t, θ̂). Least-squares line in gray.

Table 8 contains the BIC values for the estimated distributions with time-

varying mean. As for the static distributions, the ranking across distributions

is relatively stable over the cross-sectional dimension p. However, now in the dy-

namic setting, the ranking across distributions is less clustered. The Inverse t-Riesz

and the F -Riesz distributions emerge as the clear winners exhibiting the smallest

BIC values. They are very close, with the former winning the three industry-

specific datasets and the latter winning the three random datasets. This is again

in line with our economic intuition that tail-homogeneity is more advantageous

for RCs of homogeneous assets.

The Riesz and its special case, the Wishart distribution, are unambiguously

the worst-fitting distributions. In general, inverse distributions fit better than

non-inverted ones. This is not surprising since fitting the inverse distributions to

{R1,R2, . . . ,RT} is equivalent to fitting the corresponding non-inverted ones to

{R−11 ,R−12 , . . . ,R−1T }. The inverted RCs, also known as precision or concentration

matrices, exhibit much thinner tails; hence the good fit of inverse distributions.

Obviously, by construction, every Wishart-type distribution has a lower estimated

likelihood value than its Riesz-type counterpart. However, it is noteworthy that

the difference in likelihood values is particularly large between the (Inverse) F -

Riesz distribution and the F distribution.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 319 616 541 1565 1870 900
Riesz 282 559 413 1061 1066 103
Inv.Wishart 224 425 174 -32 -101 -999
Inv.Riesz 214 404 126 -226 -423 -1271
t-Wishart 153 327 15 -685 -274 -972
t-Riesz 139 307 -44 -869 -662 -1432
Inv.t-Wishart 135 304 -94 -912 -1137 -1978
Inv.t-Riesz 128 292 -128 -1026 -1302 -2162
F 210 414 136 -230 -396 -1172
F -Riesz 147 319 -89 -715 -1173 -1959
Inv.F -Riesz 155 332 -59 -651 -1112 -1876

Table 9: Average of log-score loss over one-month forecasting period (22 trading

days), −∑22

j=1
pD(Rt+j|Σ̂j+1, θ̂D,j+1), for the entire forecasting window;

each model is re-estimated every ten trading days; 90% model confidence
sets in red.

Finally, in Figure 12 we compare the log-likelihood contributions of the Inverse

t-Riesz and F -Riesz distribution (similar to Figure 11 but for the time-varying

mean specification). As in the static case, larger RCs are associated with higher

log-likelihood contributions for the tail-homogeneous Inverse t-Riesz distributions,

in line with our economic intuition that more volatile trading days exhibit more

dependence among financial assets, favoring tail-homogeneity. Also in line with the

static case, the smallest RCs are associated with higher log-likelihood contributions

for the Inverse t-Riesz distribution, indicating that when markets are very calm,

tail-homogeneity might be favored as well.

5.4 Out-of-Sample Forecasting Performance

We re-estimate the models every ten trading days on a rolling window of 1250

observations (roughly five years of data). The forecasting window starts on 18

December 2006 and ends on 05 February 2021.

For out-of-sample comparisons between different probability distributions, a

natural loss function is the log-score, also known as the log posterior predictive

likelihood, since it indicates how much probability mass the predictive distribu-

tion assigns to the observed outcome (compare e.g. Hautsch and Voigt 2019 and
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Blasques et al. 2021). The log-score evaluates the out-of-sample data with the

same loss function used to estimate the models in-sample. This is in line with

Hansen and Dumitrescu (2022), who show that coherency between the estimation

criterion and the actual objective is essential.

Since we are interested in overall distribution fit, it is important to not only

look at the t + 1 forecasting performance of the different distributions. To this

end, Table 9 contains the log-score losses over a one-month forecasting period (22

trading days) for the entire forecasting window. The 90% model confidence sets

(MCS, see Hansen, Lunde, and Nason 2011) are shaded in gray.33

We see that the Inverse t-Riesz distribution emerges as the clear winner for

log-score losses over a one-month forecasting period as it is the only member of

the MCS for all datasets. Across datasets, the entire t-Riesz distribution family

fits very well out-of-sample, and slightly better than the F -Riesz, except for the

25-dimensional datasets.

If we take a volatile period (2007 - 2011) and a calm period (2012 - 2019) fore-

casting window (see Tables 16 and 17 in the appendix), the Inverse t-Riesz distri-

bution remains the sole member of the MCS except for the random 25-dimensional

dataset in the calm period (even here it has the lowest loss value), where also the

F -Riesz distribution is in the MCS.

In Table 10 we also report the one-day-ahead log-score loss results for the entire

sample. Here the Inverse t-Riesz distribution is the sole member of the MCS for

the industry-specific Mining and Finance datasets, while for the other datasets,

the F -Riesz distribution is also in the MCS. Still, the Inverse t-Riesz distribution

has lower losses than the F -Riesz for all datasets except for the 25-dimensional

one.

The above observations confirm our intuition that tail-homogeneity is a rea-

sonable assumption. Clearly, the worst fitting distributions out-of-sample are the

Riesz and its special case the Wishart distributions.

33. For calculation of the MCS, we choose 5000 stationary bootstrap replications with block
length set equal to the maximum number of consecutive significant partial autocorrelations of
the losses. We use the MFE toolbox by Kevin Sheppard for MCS calculation.
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6 Conclusion

In conclusion, this paper provides a comprehensive comparison of probability dis-

tributions used to model realized covariance matrices (RCs) in financial applica-

tions. We reveal theoretical similarities and differences among the distributions,

which are useful in explaining their disparity in empirical fit and forecasting per-

formance. We derive the novel t-Riesz distribution family, which features tail-

homogeneity as opposed to the tail-heterogeneity implied by the F -Riesz distri-

bution. We show that the novel t-Riesz distribution family can be rooted in a

realistic low-level assumption on the intraday return vectors from which the real-

ized covariance matrices are constructed. In the empirical part of the paper we

perform fit and forecasting comparisons of the different distributions in different

datasets and explain how the theoretical differences translate into differences in

fit and forecasting performance. It emerges that when assuming a static distri-

bution for the RCs, the t-Riesz distribution fits best in terms of BIC values. It

matches the fat tails, the marginal distributions of the realized variances and co-

variances, and the tail-homogeneity that financial data exhibits. In the dynamic

setting where the mean of the distributions is assumed to be time-varying, the

distribution rankings are less pronounced. Here, the Inverse t-Riesz and F -Riesz

distribution fit best in-sample and out-of-sample with an advantage in favor of

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 7.22 15.97 3.51 -18.61 -0.79 -29.75
Riesz 6.53 15.08 0.60 -25.22 -19.40 -49.70
Inv.Wishart 5.35 12.94 -4.84 -35.97 -49.62 -83.52
Inv.Riesz 5.04 12.52 -6.14 -39.49 -56.69 -91.34
t-Wishart 4.85 12.23 -4.79 -40.61 -32.63 -61.30
t-Riesz 4.38 11.67 -6.95 -46.42 -46.68 -76.80
Inv.t-Wishart 4.01 11.02 -9.59 -50.55 -70.32 -104.08
Inv.t-Riesz 3.70 10.67 -10.86 -53.90 -75.18 -110.57
F 5.18 12.85 -5.44 -38.59 -56.51 -87.99
F -Riesz 3.75 10.85 -10.81 -48.56 -76.43 -109.33
Inv.F -Riesz 3.93 11.09 -10.16 -47.36 -74.87 -107.25

Table 10: Average of log-score loss, −pD(Rt+1|Σ̂t+1, θ̂D,t+1), for the entire forecast-
ing window, where each model is re-estimated every 10 trading days.
90% model confidence sets in red.
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the former. We show that, especially in times of high market volatility and for

assets of the same industry sector, tail-homogeneity is a more fitting assumption

to the RC time-series data. Overall, the paper provides important insights for

practitioners and researchers who want to model RCs of financial asset returns.
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ance Targeting Estimation of Multivariate GARCH Models.” Journal of Fi-

nancial Econometrics 14 (2): 353–382.

Golosnoy, Vasyl, Bastian Gribisch, and Roman Liesenfeld. 2012. “The

Conditional Autoregressive Wishart Model for Multivariate Stock Market

Volatility.” Journal of Econometrics 167 (1): 211–223.

Gorgi, Paolo, Peter R. Hansen, Pawel Janus, and Siem J. Koopman.

2019. “RealizedWishart-GARCH: A Score-Driven Multi-Asset Volatility Model.”

Journal of Financial Econometrics 17 (1): 1–32.

52



Gourieroux, Christian, Joann Jasiak, and Razvan Sufana. 2009. “The

Wishart Autoregressive Process of Multivariate Stochastic Volatility.” Jour-

nal of Econometrics 150 (2): 167–181.

Gribisch, Bastian, and Jan P. Hartkopf. 2022. “Modeling Realized Covari-

ance Measures with Heterogeneous Liquidity: A Generalized Matrix-Variate

Wishart State-Space Model.” Journal of Econometrics.

Gupta, Arjun K., and Daya K. Nagar. 2000. Matrix Variate Distributions.

Chapman and Hall/CRC.

Gupta, Arjun K., Tamas Varga, and Taras Bodnar. 2013. Elliptically Con-

toured Models in Statistics and Portfolio Theory. Springer.

Hansen, Peter R., and Elena-Ivona Dumitrescu. 2022. “How Should Pa-

rameter Estimation be Tailored to the Objective?” Journal of Econometrics

230 (2): 535–558.

Hansen, Peter R., Asger Lunde, and James M. Nason. 2011. “The Model

Confidence Set.” Econometrica 79 (2): 453–497.

Hassairi, Abdelhamid, Fatma Ktari, and Raoudha Zine. 2022. “On the

Gaussian Representation of the Riesz Probability Distribution on Symmetric

Matrices.” AStA Advances in Statistical Analysis 106 (4).

Hautsch, Nikolaus, and Stefan Voigt. 2019. “Large-Scale Portfolio Alloca-

tion under Transaction Costs and Model Uncertainty.” Big Data in Dynamic

Predictive Econometric Modeling, Journal of Econometrics 212 (1): 221–240.

Jin, Xin, and John M. Maheu. 2016. “Bayesian Semiparametric Modeling of

Realized Covariance Matrices.” Journal of Econometrics 192 (1): 19–39.

Koev, Plamen, and Alan Edelman. 2006. “The Efficient Evaluation of the Hy-

pergeometric Function of a Matrix Argument.” Mathematics of Computation

75 (254): 833–846.

Louati, Mahdi, and Afif Masmoudi. 2015. “Moment for the Inverse Riesz

Distributions.” Statistics & Probability Letters 102:30–37.

53



Lunde, Asger, Neil Shephard, and Kevin Sheppard. 2016. “Econometric

Analysis of Vast Covariance Matrices Using Composite Realized Kernels and

Their Application to Portfolio Choice.” Journal of Business and Economic

Statistics 34 (4): 504–518.

Maaß, Hans. 1971. Siegel’s Modular Forms and Dirichlet Series. Springer.

McAleer, Michael, and Marcelo C. Medeiros. 2008. “Realized Volatility: A

Review.” Econometric Reviews 27 (1-3): 10–45.

Mittelhammer, Ron C. 2013. Mathematical Statistics for Economics and Busi-

ness. Springer.

Noureldin, Diaa, Neil Shephard, and Kevin Sheppard. 2012. “Multivari-

ate High-Frequency-Based Volatility (HEAVY) Models.” Journal of Applied

Econometrics 27 (6): 907–933.

Olkin, Ingram. 1959. “A Class of Integral Identities with Matrix Argument.”

Duke Mathematical Journal 26 (2): 207–213.

Opschoor, Anne, Pawel Janus, André Lucas, and Dick van Dijk. 2018.
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7 Appendix

7.1 Proofs

7.1.1 Proof of Theorem 2.1

Proof.

Proof of E[BB⊤]: This result has been proven in Dı́az-Garćıa (2013). However,

our proof is more straightforward as it directly uses the stochastic representations

in terms of the Bartlett matrices. We have

(BB⊤)ij =

p∑

k=1

Bik(B
⊤)kj =

p∑

k=1

BikBjk. (36)
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For the off-diagonal elements, i.e. i ̸= j, we have

E[(BB⊤)ij] =

p∑

k=1

E[BikBjk] =

p∑

k=1

E[Bik]E[Bjk] = 0, (37)

where we have used independence of the elements in B and the fact that at least

one of the elements in each summand above is a mean zero normal random variable.

For the diagonal elements, i.e. i = j, we have

(BB⊤)ii =

p∑

k=1

B2
ik =

i∑

k=1

B2
ik, (38)

which is the sum of a χ2
ni−i+1 and (i− 1) independent N (0, 1)2 random variables,

which implies that

i∑

k=1

B2
ik ∼ χ2

ni
(39)

with expectation ni. Thus

E[(BB⊤)ii] = ni. (40)

Proof of E[(B̄B̄⊤)−1]: See Louati and Masmoudi (2015).

Proof of E[B̄−⊤BB⊤B̄−1]: See Theorem 10 in Blasques et al. (2021).

Proof of E[B(B̄B̄⊤)−1B⊤]: Due to independence, we have

E[BB̄−⊤B̄−1B⊤] = E[Bdg(
◦
ν)B⊤],

where
◦
ν is given in (11). Denote

T = B(
◦
ν)1/2,

with elements Tij = Bij

√
◦
νj. The (i, j)’th element of R = TT⊤ is

Rij =

p∑

k=1

Tik(T
⊤)kj =

p∑

k=1

TikTjk =

p∑

k=1

◦
νk BikBjk,
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which for i ̸= j we have

E[Rij] =

p∑

k=1

◦
νk E[BikBjk] =

p∑

k=1

◦
νk E[Bik]E[Bjk] = 0,

because of the independence of the elements in B and the fact that at least one

of the elements in each summand is mean zero. Furthermore, for i = j we have

E[Rii] =

p∑

k=1

◦
νk E[B2

ik] =
i∑

k=1

◦
νk E[B2

ik],

with

E[B2
ik] =




1, for i ̸= k

nk − k + 1 for i = k.

Thus the elements of EiFR[R] = dg(
◦◦
n) are given by

E[R1 1] = (n1 − 1 + 1)
◦
ν1,

E[R2 2] =
◦
ν1 +(n2 − 2 + 1)

◦
ν2,

E[R3 3] =
◦
ν1 +

◦
ν2 +(n3 − 3 + 1)

◦
ν3,

...

or

◦
νi=

i−1∑

j=1

◦
νj +(ni − i+ 1)

◦
νi

or more precisely

◦
νi=




n1

◦
ν1, for i = 1

∑i−1
j=1

◦
νj +(ni + i− 1)

◦
νi, for i > 1,

(41)

which for ni = n and νi = ν for all i equals n

ν−p−1 .
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7.1.2 Proof of Lemma 2.1

Proof. The equivalence between the two different representations is proofed in

Maaß (1971), pp. 69-70. This proof is closely based on it. Using the LDL and

Cholesky decomposition of Σ,

Σ = TDT⊤ = CC⊤.

Then

Σ[j] = C[j]C
⊤
[j] = T[j]D[j]T

⊤
[j],

where X[i] denotes the square submatrix created by taking the first i rows and

columns of X. So

|Σ[j]| =
j∏

i=1

Dii

and thus

|Σ[1]| = D1 1 and for j > 1 we have |Σ[j]|/|Σ[j−1]| = Djj.

Finally

p∏

i=1

Dsi
ii = |Σ[1]|s1

p∏

i=2

(|Σ[i]|/|Σ[i−1]|)si = |Σ[1]|s1−s2 |Σ[2]|s2−s3 . . . |Σ[p]|sp .

7.1.3 Proof of Theorem 2.2

Proof. We will make use of properties of probability limits of products of (inverse)

random matrices and of Slutzky’s Theorems for random matrices (see e.g. Theo-

rems 5.6, 5.9 and 5.10 in Mittelhammer 2013).

The non-zero off-diagonal elements of the lower triangular matrix dg(n)−
1
2B,
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i < j are given by

(dg(n)−
1
2B)ij =

(B)ij√
ni

p→ 0, as ni →∞,

since (B)ij ∼ N (0, 1) for i < j.

Furthermore, note that for the squared diagonal (i = j) elements we have for

ni →∞,

E
[
((B)ii)

2

ni

]
=
ni − i+ 1

ni

→ 1 and

Var

(
((B)ii)

2

ni

)
= 2

ni − i+ 1

n2
i

→ 0,

since ((B)ii)
2 is χ2

ni−i+1 distributed, and thus as ni →∞

((B)ii)
2

ni

p→ 1⇔ (B)ii√
ni

p→ 1,

where the equivalence follows from the Continuous Mapping Theorem. Finally,

we can conclude that as ni →∞ for all i,

plim
n→∞

(dg(n)−
1
2B) = I, (42)

where n → ∞ means that all elements in n converge to infinity and the plim

operator on a matrix is to be understood element-wise. By similar arguments we

get that as νi →∞ for all i,

plim
ν→∞

(B̄dg(ν)−
1
2 ) = I

and consequently

plim
ν→∞

((B̄dg(ν)−
1
2 )−1) = I. (43)
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Now, we have

dg(
◦
n)−

1
2 B̄−⊤B = dg(

◦
n)−

1
2dg(ν)−

1
2

︸ ︷︷ ︸ dg(ν)
1
2 B̄−⊤︸ ︷︷ ︸ B

d−−−→
ν→∞

dg(n)−
1
2B

−−−→
ν→∞

dg(n)−
1
2

p−−−→
ν→∞

I

and

dg(
◦◦
n)−

1
2BB̄−⊤ = dg(

◦◦
n)−

1
2dg(n)

1
2

︸ ︷︷ ︸ dg(n)−
1
2B︸ ︷︷ ︸ B̄−⊤

d−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤

−−−→
n→∞

dg(
◦
ν)

1
2

p−−−→
n→∞

I.

Finally,

dg(
◦
n)−

1
2 B̄−⊤BB⊤B̄−1dg(

◦
n)−

1
2

d−−−→
ν→∞

dg(n)−
1
2BB⊤dg(n)−

1
2 and

dg(
◦◦
n)−

1
2BB̄−⊤B̄−1B⊤dg(

◦◦
n)−

1
2

d−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2 ,

which are the stochastic representations of the Riesz and Inverse Riesz, respec-

tively.

The proofs for

(ν − 2)(χ2
ν)
−1dg(n)−

1
2BB⊤dg(n)−

1
2

d−−−→
ν→∞

dg(n)−
1
2BB⊤dg(n)−

1
2 and

χ2
n

n
dg(

◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2

d−−−→
n→∞

dg(
◦
ν)

1
2 B̄−⊤B̄−1dg(

◦
ν)

1
2

are very easy, noticing that (ν − 2)(χ2
ν)
−1 and χ2

n/n converge in probability to 1.

7.1.4 Proof of Theorem 2.3

Proof. All proofs start from the stochastic representations given in Table 1. The

two integrals in the following lemma are important for the derivation of the p.d.f.s

of the Riesz-type distributions.
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Lemma 7.1. (Faraut and Korányi 1994) For n with ni > i− 1 we have,

∫

A>0

|A|n−p−1
2

etr

(
−1

2
BA

)
dA = 2pn̄/2Γp

(n
2

)
|B−1|n

2
(44)

and for ni < i− p we have,

∫

A>0

|A−1|n+p+1
2

etr

(
−1

2
BA

)
dA =

1

2pn̄/2
Γp

(
−
←−n
2

)
|B|n

2
. (45)

Proof. The proofs can be found in Faraut and Korányi (1994) chapter VII.34.

Throughout, according to their table on p. 97, for the cone of symmetric positive

definite matrices, we have the dimension n = p(p+ 1)/2, the rank r = p and d =

1.35 Throughout their book, they use the Euclidean measure on a Euclidean space,

which translated into our notation is dx =
∏p

i=1
aii2

p(p−1)/4∏
i<j

aij = 2p(p−1)/4dA

and leads to a slightly different multivariate gamma function.36 In particular, from

their Theorem VII.1.1.

ΓΩ(n) = 2p(p−1)/4Γp(n), (46)

with Γp(n) as in Definition 2.2. Their Proposition VII.1.2., with x = A, y = 1

2
B

and s = n

2
translates to

∫

A>0

|A|n−p−1
2

etr

(
−1

2
BA

)
2p(p−1)/4dA = 2p(p−1)/4Γp

(n
2

)
|2B−1|n

2

= 2p(p−1)/4Γp

(n
2

)
2pn̄/2|B−1|n

2
.

Their last equation on page 129, together with Proposition VII.1.5 (ii) and x = A,

34. Further references are Dı́az-Garćıa (2014), Maaß (1971) p. 76, Gupta and Nagar (2000),
Theorem 1.4.7, which is based on Olkin (1959), which in turn is based on the generalized Ingham
formula in Bellman (1956).
35. For the notation see their Example 2 on p. 8 and p. 9.
36. I thank Jacques Faraut for pointing this out to me.
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y = 1

2
B and s = n

2
translates to

∫

A>0

|A−1|n+p+1
2

etr

(
−1

2
BA

)
2p(p−1)/4dA = 2p(p−1)/4Γp

(
−
←−n
2

) ∣∣∣∣
1

2
B

∣∣∣∣
n
2

= 2p(p−1)/4Γp

(
−
←−n
2

)
1

2pn̄/2
|B|n

2
.

t-Riesz distribution: The stochastic representation is R = CΩ(b̄)
−2BB⊤C⊤Ω , which

can be written as R = w−1A, with A ∼ R(Ω,n) independent of w ∼ χ2
ν. The

joint p.d.f. of w and A is given by

1

Γ (ν/2) 2ν/2
w

ν
2−1 exp

(
−w
2

) |A|n−p−1
2

exp
(
− 1

2
tr
(
Ω−1A

))

|Ω|n
2
Γp (n/2) 2pn̄/2

.

TransformingR = w−1A, with Jacobian J(w,A→ w,R) = wp(p+1)/2 (see e.g. Gupta

and Nagar 2000, equation 1.3.5.), we get the joint density of w and R as

1

Γ (ν/2) 2ν/2
w

ν
2−1 exp

(
−w
2

) |wR|n−p−1
2

exp
(
−w

2
tr
(
Ω−1R

))

|Ω|n
2
Γp (n/2) 2pn̄/2

w
p(p+1)

2

=
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2
w

ν+pn̄
2 −1 exp

(
−w
2

(
1 + tr

(
Ω−1R

)))
,

where

|wR|n−p−1
2

= |R|n−p−1
2

p∏

i=1

w
ni−p−1

2 = |R|n−p−1
2
wp

n̄−(p+1)
2 .

Now integrating out w we get the p.d.f. of R as

ptR(R|Ω,n, ν) =
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2

×
∫ ∞

0

w
ν+pn̄

2 −1 exp
(
−w
2

(
1 + tr

(
Ω−1R

)))
dw

=
|Ω|−n

2
|R|n−p−1

2

Γ (ν/2) Γp (n/2) 2(ν+pn̄)/2
Γ ((ν + pn̄)/2)

[
1

2

(
1 + tr

(
Ω−1R

))]−(ν+pn̄)/2

=
Γ ((ν + pn̄)/2)

Γ(ν/2)Γp(n/2)
|Ω|−n

2
|R|n−p−1

2

(
1 + tr

(
Ω−1R

))− ν+pn̄
2 ,

where we used equation (5.9.1) of the NIST Digital Library of Mathematical Func-
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tions.

Inverse t-Riesz distribution: We haveR = CΩ(b)
2
(
B̄B̄⊤

)−1
C⊤Ω , which can be writ-

ten as R = wA, with A ∼ iR(Ω,ν) independent of w ∼ χ2
n. The joint p.d.f. of w

and A is given by

1

Γ (n/2) 2n/2
w

n
2−1 exp

(
−w
2

) |Ω| ν
2
|A|− ν+p+1

2

Γp

(←−ν /2
)
2pν̄/2

exp

(
−1

2
tr (ΩA−1)

)
.

Transforming R = wA, with Jacobian J(w,A → w,R) = w−p(p+1)/2 (see e.g.

Gupta and Nagar 2000, equation 1.3.5.), we get the joint density of w and R as

wn/2−1

Γ (n/2) 2n/2
exp

(
−w
2

) |Ω| ν
2
|w−1R|− ν+p+1

2

Γp

(←−ν /2
)
2pν̄/2

exp

(
−1

2
tr (wΩR−1)

)
w−

p(p+1)
2

=
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

w
n+pν̄

2 −1 exp
(
−w
2
(1 + tr (ΩR−1))

)
,

where

|wR|− ν+p+1
2

= |R|− ν+p+1
2

p∏

i=1

w
νi+p+1

2 = |R|− ν+p+1
2
wp

ν̄+(p+1)
2 .

Now integrating out w we get the p.d.f. of R as

pitR(R|Ω, n,ν) =
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

×
∫ ∞

0

w
n+pν̄

2 −1 exp
(
−w
2
(1 + tr (ΩR−1))

)
dw

=
|Ω| ν

2
|R|− ν+p+1

2

Γ (n/2) Γp

(←−ν /2
)
2(n+pν̄)/2

Γ ((n+ pν̄)/2)

(
1

2
(1 + tr (ΩR−1))

)−n+pν̄
2

=
Γ ((n+ pν̄)/2)

Γ (n/2) Γp

(←−ν /2
) |Ω| ν

2
|R|− ν+p+1

2
((1 + tr (ΩR−1)))

−n+pν̄
2 ,

where we used equation (5.9.1) of the NIST Digital Library of Mathematical Func-

tions.

Inverse F -Riesz distribution: The stochastic representation an F -Riesz distribu-

tion of type II with scale matrix Ω−1, and d.o.f. parameter vectors ν and n is
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UΩ−1B−1B̄B̄⊤B−1U⊤Ω−1 , where UΩ−1 is the upper Cholesky factor of Ω−1.37 Thus

the stochastic representation of the Inverse F -Riesz distribution of type II is given

by

R = CΩBB̄−⊤B̄−1B⊤C⊤Ω , (47)

which translate to R ∼ iRII(Y,ν), Y ∼ RI(Ω,n).38 For the p.d.f. we can

consequently use

piFR(R|Ω,n,ν) =
∫

Y>0

p
iRII(R|Y,ν)pRI(Y|Ω,n)dY

=

∫

Y>0

(
|R|− ν+p+1

2
|Y| ν

2
etr

(
−1

2
YR−1

)
1

Γp(
←−ν /2)2pν̄/2

× |Y|n−p−1
2
|Ω|−n

2
etr

(
−1

2
Ω−1Y

)
1

Γp (n/2) 2pn̄/2

)
dY

=
1

Γp(
←−ν /2)Γp (n/2) 2p(ν̄+n̄)/2

|R|− ν+p+1
2
|Ω|−n

2

×
∫

Y>0

|Y|n+ν−p−1
2

etr

(
−1

2
Y(Ω−1 +R−1)

)
dY

=
2p(ν̄+n̄)/2Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2) 2p(ν̄+n̄)/2

|R|− ν+p+1
2
|Ω|−n

2

∣∣∣
(
Ω−1 +R−1

)−1∣∣∣
ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp (n/2)

|R|− ν+p+1
2
|Ω|−n

2
|(Ω−1 +R−1)−1| ν+n

2
, (48)

where we used Theorem 7.1. Now rewrite using Lemma 2.2.

7.1.5 Proof of Theorem 3.1

Proof. This Theorem is closely based on Gupta, Varga, and Bodnar (2013). If

r̃ follows an elliptically contoured distribution, r̃ ∼ ETmp(0, ITm ⊗ Ωp, ψ), then

according to their Theorem 2.1 X⊤ ∼ ETm,p(0, ITm⊗Ωp, ψ) and then according to

their Theorem 2.3 X ∼ Ep,Tm(0,Ωp⊗ ITm, ψ). Then the first part of our Theorem

follows from their Theorem 5.5 and by noticing that

tr
(
X⊤Ω−1X

)
= vec(X)⊤vec(Ω−1X) = vec(X)⊤(I⊗Ω−1)vec(X)

= r̃⊤(I⊗Ω−1)r̃.

37. See Blasques et al. (2021).

38. Recall that U−⊤
Ω−1 = CΩ.
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The fact that the marginal distribution of all daily RCs has the p.d.f. as shown

in the Theorem, follows from Theorem 5.2 of Gupta, Varga, and Bodnar (2013)

with their parameter m = 1.39

7.1.6 Proof of Theorem 3.2

Proof. The RC can be written as

Rt =
m∑

j=1

rt,jr
⊤
t,j = XtX

⊤
t = ytCΩt

ZtZ
⊤
t C

⊤
Ωt
.

Hassairi, Ktari, and Zine (2022) show that if the assets in Zt are sorted according

to their liquidity with the least liquid asset in the first row, then ZtZ
⊤
t follows

a Riesz distribution with parameter matrix Ωt = I and d.o.f. parameter vector

m, which implies that CΩt
ZtZ

⊤
t C

⊤
Ωt
∼ R(Ωt,m) follows a Riesz distribution with

parameter matrix Ωt and d.o.f. parameter vector n. Then according to Theorem

2.3 R ∼ tR(Ωt,m, ν).

7.2 Probability Density Functions

Our first aim is to derive the p.d.f.s in Table 5 from the stochastic representations

of the respective distribution given by equation (4) in conjunction with Table 1.

For the derivation of the Riesz, Inverse Riesz and F -Riesz p.d.f.s we refer to

Blasques et al. (2021), where to translate their notation to ours we use Γ̄U(n) =

Γp(
←−n ) (Lemma 7.2), U |X|n = |X−1|−n (Lemma 2.2 (iv)) and ΣBlasques = Ω.

Lemma 7.2. Let the upper generalized multivariate gamma function, Γ̄U (·), be
defined as in Blasques et al. (2021) and denote a vector with its elements in

reverse order by a superscript left arrow, e.g. ←−n = (np, np−1, . . . , n1)
⊤, then

Γp

(←−n
)
= Γ̄U (n) .

39. Note that in part one of our Theorem, i.e. equation (), (and in Theorem 5.5 of Gupta,
Varga, and Bodnar (2013)) the individual Rt are interchangeable.
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Proof. We have (←−n )i = np−i+1, such that

Γp

(←−n
)
= πp(p−1)/2

p∏

i=1

Γ

(
np−i+1 −

i− 1

2

)

= πp(p−1)/2
p∏

i=1

Γ

(
ni −

p− 1

2

)
= Γ̄U (n) .

In particular, the p.d.f. of the Riesz distribution (CΩBB⊤C⊤Ω) has been derived

in Theorems 4 (i) of Blasques et al. (2021).

Our stochastic representation of the Inverse Riesz distribution (CΩB̄
−⊤B̄−1C⊤Ω)

is the same as the one of the Inverse Riesz type II in Blasques et al. (2021)

(U−⊤B̄−⊤B̄−1U−1) (see their Theorem 4 (ii) and Definition 6 (ii)), because U

is the upper Cholesky factor of Ω−1 and consequently U−⊤ = CΩ is the lower

Cholesky factor of Ω. The corresponding p.d.f. is given in their Theorem 7 (ii).

For the F -Riesz distribution (CΩB̄
−⊤BB⊤B̄−1C⊤Ω) use their Theorem 8 (i) and

notice that their Y = CΩB̄
−⊤B̄−1C⊤Ω and thus, according to their Theorem 4 (i)

their X|Y = CΩB̄
−⊤BB⊤B̄−1C⊤Ω . So the stochastic representations are identical,

and the corresponding p.d.f. is given in their Theorem 8 (i) and can be rewritten

using Lemma 2.2 (iv) as

pFR =
Γp((
←−n +←−ν )/2)

Γp(n/2)Γp(
←−ν /2) |Ω|

ν
2
|R|n−p−1

2
|Ω+R|−n+ν

2
(49)

=
Γp((
←−n +←−ν )/2)

Γp(n/2)Γp(
←−ν /2) |Ω|−

n
2
|R|n−p−1

2
|I+C−1Ω RC−⊤Ω |−n+ν

2
.

The p.d.f.s of the t-Riesz, Inverse t-Riesz, and Inverse F -Riesz distributions are

derived in Theorem 2.3. The one of the Inverse F -Riesz can be rewritten using

Lemma 2.2 (iv) as

piFR =
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω|−n
2
|R|− ν+p+1

2
|(Ω−1 +R−1)−1| ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω|−n
2
|R|n−p−1

2
|(I+C⊤RΩ

−1CR)
−1| ν+n

2

=
Γp((ν + n)/2)

Γp(
←−ν /2)Γp(n/2)

|Ω| ν
2
|R|− ν+p+1

2
|(I+C⊤ΩR

−1CΩ)
−1| ν+n

2
.
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Now that we have derived all Riesz-type p.d.f.s, it is easy to get the Wishart-type

p.d.f.s since they are just special cases where all elements in the d.o.f. parameter

vectors are equal to each other and using that for n = (n, n, . . . , n), Γp(n) = Γp(n)

and |X|n| = |X|n (see Definitions 2.1 and 2.2).

Notice that the stochastic representations of the F -Riesz and Inverse F -Riesz

are, if ∀i, ni = n and νi = ν, (i.e. in case of an F distribution) CΩB̄−⊤BB⊤B̄−1C⊤Ω
and CΩBB̄−⊤B̄−1B⊤C⊤Ω , respectively, and their p.d.f.s are identical,

pFR(R|Ω, (n, . . . , n), (ν, . . . , ν))

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω|−n

2 |R|n−p−1
2 |I+C−1Ω RC−⊤Ω |−

n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|n−p−1

2 |Ω+R|−n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 |ΩR−1 + I|−n+ν
2

=
Γp((n+ ν)/2)

Γp(n/2)Γp(ν/2)
|Ω| ν2 |R|− ν+p+1

2 |(I+C⊤ΩR
−1CΩ)

−1| ν+n
2

= piFR(R|Ω, (n, . . . , n), (ν, . . . , ν))

= pF (R|Ω, n, ν).

This proves that both its alternative stochastic representations given in Table 1

yield the F distribution. Note that R ∼ FR(Ω−1,n,ν) ⇏ R−1 ∼ FR(Ω,ν,n)
for either type.40 This is in contrast to the F distribution. Also, note that the

standardized F -Riesz distribution cannot be obtained by mixing a standardized

Riesz with a standardized Inverse Riesz but only by mixing the non-standardized

versions and then standardizing the resulting distribution, as done above. This is

also in contrast to the F distribution and can be seen since

Cdg(
◦
n)−

1
2 B̄−⊤BB⊤B̄−1dg(

◦
n)−

1
2C⊤

̸= Cdg(
◦
ν)−

1
2 B̄−⊤dg(n)−

1
2BB⊤dg(n)−

1
2 B̄−1dg(

◦
ν)−

1
2C⊤.

Next, in Table 11 we list the p.d.f.s of the standardized distributions pD(R|Σ,θD).
They can be derived by replacing in the non-standardized p.d.f.s Ω = CM−1

D C,

40. See the derivation of the Inverse F -Riesz type II. The derivation of the Inverse F -Riesz
type I is very similar.
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where C is the lower Cholesky factor of Σ = CC⊤ and using Lemma 2.2 (iv).
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Distribution Probability Density Function pD(R|Σ,θD)
Wishart nnp/2

2np/2

1

Γp(n/2)
|R|− p+1

2 |Z|n2 etr(− 1

2
nZ)

Riesz
∏p

i=1 n
ni/2

i

2pn̄/2

1

Γp(n/2)
|R|− p+1

2 |Z|n
2

etr(− 1

2
dg(n)Z)

Inv.Wishart (ν−p−1)νp/2

2νp/2

1

Γp(ν/2)
|R|− p+1

2 |Z|− ν
2 etr(− 1

2
(ν − p− 1)Z−1)

Inv.Riesz
∏p

i=1

◦
ν
−νi/2

i

2pν̄/2

1

Γp(
←−ν /2)
|R|− p+1

2 |Z|− ν
2
etr(− 1

2
dg(

◦
ν)−1Z−1)

t-Wishart ( n

ν−2)
pn/2 Γ((ν+pn)/2)

Γp(n/2)Γ(ν/2)
|R|− p+1

2 |Z|n2 (1 + n

ν−2tr(Z))
− ν+pn

2

t-Riesz
∏p

i=1 n
ni/2

i

(ν−2)pn̄/2

Γ((ν+pn̄)/2)

Γp(n/2)Γ(ν/2)
|R|− p+1

2 |Z|n
2

(1 + 1

ν−2tr(dg(n)Z))
− ν+pn̄

2

Inv.t-Wishart (ν−p−1
n

)
νp
2

Γ((n+pν)/2)

Γ(n/2)Γp(ν/2)
|R|− p+1

2 |Z|− ν
2 (1 + ν−p−1

n
tr(Z−1))−

n+pν
2

Inv.t-Riesz
∏p

i=1

◦
ν
−νi/2

i

npν̄/2

Γ((n+pν̄)/2)

Γ(n/2)Γp(
←−ν /2)
|R|− p+1

2 |Z|− ν
2
(1 + 1

n
tr(dg(

◦
ν)−1Z−1))−

n+pν̄
2

F ( n

ν−p−1)
np
2

Γp((n+ν)/2)

Γp(n/2)Γp(ν/2)
|R|− p+1

2 |Z|n2 |I+ n

ν−p−1Z|−
ν+n

2

F -Riesz
∏p

i=1

◦
n

ni
2

i
Γp((
←−n+←−ν )/2)

Γp(n/2)Γp(
←−ν /2)
|R|− p+1

2 |Z|n
2
|I+ dg(

◦
n)

1
2Zdg(

◦
n)

1
2 |−n+ν

2

Inv.F -Riesz
∏p

i=1

◦◦
n
− νi

2

i
Γp((n+ν)/2)

Γp(n/2)Γp(
←−ν /2)
|R|− p+1

2 |Z|− ν
2
|(I+ dg(

◦◦
n)−

1
2Z−1dg(

◦◦
n)−

1
2 )−1|n+ν

2

Table 11: Standardized probability density functions. We define Z = C−1RC−⊤, where C is the lower Cholesky factor of Σ. For

the definition of
◦
ν,

◦
n and

◦◦
n Theorem 2.1. To derive these representations from the ones in Table 5 use Lemma 2.2 (iv).
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart -67794 -84692 -168435 -527223 -537407 -381884
Riesz -55534 -70180 -108027 -345020 -180751 -124508
Inv.Wishart -50721 -53737 -111648 -255628 -162663 -78492
Inv.Riesz -45490 -46495 -77633 -180138 36136 45223
t-Wishart -24687 -30461 -38384 -25481 86847 233668
t-Riesz -17543 -23263 -1941 49699 295409 355966
Inv.t-Wishart -24761 -27528 -40690 -11924 191946 387973
Inv.t-Riesz -20829 -19584 -8057 57397 376512 445333
F -48758 -51941 -97299 -221813 -55002 14633
F -Riesz -26402 -29242 -13809 -30051 307936 333553
Inv.F -Riesz -29622 -29930 -22537 -70305 276602 308721

Table 12: Log-likelihood values for the estimated static distributions on various
datasets. The background shades are to be read column-wise, with the
lowest log-likelihood value shaded black and the highest shaded white,
with linear gray-scaling in between. Largest values in red.

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart -15599 -11314 -1397 55874 333549 330537
Riesz -11866 -6289 13107 88881 423237 423510
Inv.Wishart -7668 1693 32727 132311 541567 547719
Inv.Riesz -5813 4154 39879 148338 574711 583946
t-Wishart -5298 5910 33588 149496 469265 467948
t-Riesz -2650 8572 44108 178339 539295 541439
Inv.t-Wishart -1422 11277 55196 195532 639630 655575
Inv.t-Riesz 440 13286 62134 213268 666312 684209
F -6908 2468 35627 142413 571495 572881
F -Riesz 721 12621 62436 190194 669628 674391
Inv.F -Riesz -122 11619 59471 185342 662615 665143

Table 13: Log-likelihood values for the estimated dynamic distributions and dif-
ferent datasets. The background shades are to be read column-wise,
with the lowest log-likelihood value shaded black and the highest shaded
white, with linear gray-scaling in between. Largest values in red.

7.3 Other Empirical Results
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Assets: Rnd Mngn Rnd Fin Rnd Manf
#Assets: 5 6 10 15 25 25

Wishart n 7.0 8.3 12.8 15.0 27.7 29.4
Riesz nmin 1.4 1.9 1.2 0.8 1.1 1.5

n̄ 6.9 7.9 12.8 12.8 25.0 25.9
nmax 12.4 16.0 24.4 27.8 49.5 52.5

t-Wishart n 17.1 17.5 22.7 28.4 38.2 42.3
t-Riesz nmin 3.9 4.4 2.2 2.2 2.1 4.4

n̄ 17.5 16.8 23.1 27.5 35.5 37.4
nmax 30.8 31.0 43.3 51.3 63.9 68.2

Inv.t-Wishart n 3.1 4.1 3.6 1.7 3.8 3.5
Inv.t-Riesz n 3.3 4.1 3.8 1.8 3.9 3.7
F n 30.1 45.8 40.6 53.1 78.7 85.0
F -Riesz nmin 3.1 4.6 2.7 1.7 5.2 2.3

n̄ 43.3 41.9 57.5 63.6 74.5 75.0
nmax 110.4 108.8 168.0 191.2 180.5 190.4

Inv.F -Riesz nmin 1.7 2.8 1.5 1.0 3.2 2.6
n̄ 1297.5 1098.2 1658.0 981.2 697.4 700.0
nmax 6429.7 6344.4 8213.8 5285.6 7480.9 7440.0

Inv.Wishart ν 9.2 11.2 16.2 19.3 34.6 36.3
Inv.Riesz νmin 4.0 4.2 4.2 4.1 4.2 4.3

ν̄ 8.5 11.0 15.7 19.3 31.7 32.4
νmax 11.9 16.8 24.1 31.0 48.2 46.6

t-Wishart ν 4.1 4.8 4.9 3.0 5.2 5.3
t-Riesz νmin 4.3 4.5 5.4 3.1 5.7 5.5
Inv.t-Wishart ν 17.3 18.4 22.6 29.4 41.2 47.7
Inv.t-Riesz νmin 8.0 5.3 3.9 6.2 4.4 6.7

ν̄ 18.7 19.6 24.3 32.8 42.3 45.5
νmax 27.9 30.9 36.4 50.5 70.3 67.9

F ν 10.9 12.9 20.7 21.5 43.1 45.9
F -Riesz νmin 4.0 4.2 5.0 3.7 3.6 3.8

ν̄ 7.9 9.8 14.1 15.1 31.8 31.8
νmax 10.7 13.7 18.6 25.2 51.4 53.8

Inv.F -Riesz νmin 4.1 3.6 4.6 4.2 3.6 3.9
ν̄ 22.4 25.2 34.6 33.2 47.5 50.4
νmax 49.4 62.3 83.9 77.4 103.7 111.3

Table 14: Estimated degree of freedom parameters of static distributions for the
different datasets.
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Assets: Rnd Mngn Rnd Fin Rnd Manf
#Assets: 5 6 10 15 25 25

Wishart n 17.6 20.9 26.3 33.2 45.2 45.1
Riesz nmin 6.3 7.6 6.0 5.4 5.0 5.0

n̄ 16.6 19.6 24.0 29.7 39.5 39.5
nmax 26.4 33.2 41.0 51.1 66.9 66.9

t-Wishart n 24.8 30.4 33.4 42.8 50.7 50.7
t-Riesz nmin 8.3 10.3 7.9 7.1 6.3 6.2

n̄ 23.1 27.9 30.1 38.5 44.3 44.3
nmax 35.2 41.1 49.0 64.5 71.7 73.2

Inv.t-Wishart n 24.2 24.3 23.9 16.5 24.2 21.8
Inv.t-Riesz n 23.1 23.9 22.1 14.4 22.5 20.9
F n 81.6 109.4 122.1 134.2 171.3 179.4
F -Riesz nmin 17.2 18.5 14.5 12.8 16.2 12.9

n̄ 71.1 84.7 93.9 100.5 117.3 124.4
nmax 142.4 169.3 203.2 210.3 225.8 264.6

Inv.F -Riesz nmin 10.2 12.4 8.5 7.8 6.8 6.7
n̄ 3078.3 2237.5 1005.8 1604.8 1965.0 1187.7
nmax 15248.2 13161.6 9356.7 12236.0 21896.1 10330.9

Inv.Wishart ν 20.9 25.4 31.9 39.9 54.1 54.4
Inv.Riesz νmin 9.9 11.1 10.1 8.7 9.2 9.7

ν̄ 19.6 23.8 29.0 35.8 48.1 48.9
νmax 25.2 32.6 38.7 46.3 62.7 64.7

t-Wishart ν 19.8 20.3 20.6 15.3 23.7 20.4
t-Riesz ν 19.8 18.8 20.6 13.7 23.7 19.9
Inv.t-Wishart ν 26.8 33.0 37.9 48.3 58.7 59.6
Inv.t-Riesz νmin 11.0 13.5 11.2 8.7 10.5 11.7

ν̄ 25.5 31.3 35.5 45.7 54.1 55.2
νmax 34.1 42.7 46.9 61.6 70.6 74.0

F νmin 27.3 32.3 41.1 53.4 70.8 69.7
F -Riesz νmin 9.3 10.4 9.5 10.6 10.7 10.5

ν̄ 19.2 22.6 27.4 35.7 50.0 49.7
νmax 26.0 28.6 34.7 53.3 73.2 72.7

Inv.F -Riesz νmin 9.0 10.1 9.5 10.1 9.5 9.5
ν̄ 33.5 39.3 45.1 51.3 63.4 63.5
νmax 56.8 82.1 79.0 83.7 102.3 102.1

Table 15: Estimated degree of freedom parameters of dynamic mean shifting dis-
tributions for the different datasets.
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Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 485 600 1121 5104 4829 3769
Riesz 449 552 984 4305 4066 2986
Inv.Wishart 420 497 775 2526 3052 2201
Inv.Riesz 407 475 730 2269 2630 1891
t-Wishart 344 364 548 1697 2423 1723
t-Riesz 330 347 510 1491 2104 1344
Inv.t-Wishart 335 346 468 1538 1809 1018
Inv.t-Riesz 325 335 445 1357 1610 848
F 410 484 738 2341 2656 1979
F -Riesz 346 389 494 1765 1833 1164
Inv.F -Riesz 355 400 533 1847 1885 1237

Table 16: Average of log-score loss over a one-month forecasting period (22 trading

days), −∑22

j=1
pD(Rt+j|Σ̂j+1, θ̂D,j+1), for the forecasting window from 1

January 2007 to 31 December 2011, where each model is re-estimated
every ten trading days. 90% model confidence sets in red.

Assets: Random Mining Random Finance Random Manuf.
#Assets: 5 6 10 15 25 25
Wishart 117 357 -87 -1467 -1502 -1940
Riesz 89 324 -197 -1695 -2160 -2611
Inv.Wishart 76 290 -295 -1786 -2823 -3534
Inv.Riesz 67 270 -349 -1948 -3075 -3792
t-Wishart 15 227 -393 -2302 -2548 -3037
t-Riesz 0 203 -468 -2483 -2994 -3561
Inv.t-Wishart -14 192 -528 -2586 -3584 -4297
Inv.t-Riesz -21 180 -571 -2667 -3729 -4490
F 57 280 -340 -2026 -3058 -3655
F -Riesz -5 189 -554 -2455 -3764 -4428
Inv.F -Riesz -1 198 -537 -2414 -3711 -4343

Table 17: Average of log-score loss over a one month forecasting period (22 trading

days), −∑22

j=1
pD(Rt+j|Σ̂j+1, θ̂D,j+1), for the forecasting window from 1

January 2012 to 31 December 2019, where each model is re-estimated
every ten trading days. 90% model confidence sets in red.
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